DOI QR코드

DOI QR Code

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Received : 2022.08.24
  • Accepted : 2022.09.15
  • Published : 2022.10.10

Abstract

Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

Keywords

References

  1. M. Taseidifar, F. Makavipour, R. M. Pashley, and A. F. M. M. Rahman, Removal of heavy metal ions from water using ion flotation, Environ. Technol. Innov., 8, 182-190 (2017). https://doi.org/10.1016/j.eti.2017.07.002
  2. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, and X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review, Environ. Sci. Technol., 50, 7290-7304 (2016). https://doi.org/10.1021/acs.est.6b01897
  3. H. Bhandari, S. Garg, and R. Gaba, Advanced nanocomposites for removal of heavy metals from wastewater, Macromol. Symp., 397, 2000337 (2021). https://doi.org/10.1002/masy.202000337
  4. K. Buruga, H. Song, J. Shang, N. Bolan, T. K. Jagannathan, and K.-H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water, J. Hazard. Mater., 379, 120584 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.067
  5. I. G. Wenten, K. Khoiruddin, A. K. Wardani, and I. N. Widiasa, Synthetic polymer-based membranes for heavy metal removal. In: A. M. Ismail, W. N. W. Salleh, N. Yusof, Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, 71-101 Elsevier (2020).
  6. R. Sabouni and H. Gomaa, Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO, Environ. Sci. Pollut. Res., 26, 5372-5380 (2019). https://doi.org/10.1007/s11356-018-4051-2
  7. Z. Tousova, B. Vrana, M. Smutna, J. Novak, V. Klucarova, R. Grabic, J. Slobodnik, J. P. Giesy, and K. Hilscherova, Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis, Sci. Total Environ., 650, 1599-1612 (2019). https://doi.org/10.1016/j.scitotenv.2018.08.336
  8. L. L. S. Silva, C. G. Moreira, B. A. Curzio, and F. V. da Fonseca, Micropollutant removal from water by membrane and advanced oxidation processes-A review, J. Water Resour. Prot., 9, 411-431 (2017). https://doi.org/10.4236/jwarp.2017.95027
  9. A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S. M. Lee, Nanocomposite thin films Ag0(NP)/TiO2 in the efficient removal of micro-pollutants from aqueous solutions: A case study of tetracycline and sulfamethoxazole removal, J. Environ. Manage., 220, 96-108 (2018). https://doi.org/10.1016/j.jenvman.2018.05.019
  10. M. Hadavifar, N. Bahramifar, H. Younesi, and Q. Li, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chem. Eng. J., 237, 217-228 (2014). https://doi.org/10.1016/j.cej.2013.10.014
  11. USEPA, National Primary Drinking Water Regulation Table, (2001).
  12. H. Zeng, L. Wang, D. Zhang, F. Wang, V. K. Sharma, and C. Wang, Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution, J. Colloid Interface Sci., 554, 479-487 (2019). https://doi.org/10.1016/j.jcis.2019.07.029
  13. I. Ogbu, K. Akpomie, A. Osunkunle, and S. Eze, Sawdust-kaolinite composite as efficient sorbent for heavy metal ions, Bangladesh J. Sci. Ind. Res., 54, 99-110 (2019). https://doi.org/10.3329/bjsir.v54i1.40736
  14. R. R. Pawar, Lalhmunsiama, H C. Bajaj, and S.-M. Lee, Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies, J. Ind. Eng. Chem., 34, 213-223 (2016). https://doi.org/10.1016/j.jiec.2015.11.014
  15. WHO, Guidelines for drinking-water quality: First addendum to volume 1, World Health Organization; 3rd Ed. 188, Geneva (2006).
  16. Y. Bendezu Roca and W. S. Fuentes, Use of nanoclay as an adsorbent to remove Cu(II) from acid mine drainage (amd), Chem. Eng. Trans., 73, 241-246 (2019).
  17. K. C. Nebagha, K. Ziat, L. Rghioui, M. Khayet, M. Saidi, K. Aboumaria, A. El Hourch, and S. Sebti, Adsorptive removal of copper (II) from aqueous solutions using low cost Moroccan adsorbent. Part I: Parameters influencing Cu (II) adsorption, J. Mater. Env. Sci., 6, 3022-3033 (2015).
  18. R. Malsawmdawngzela, Lalhmunsiama, and D. Tiwari, Novel and highly efficient functionalized bentonite for elimination of Cu2+ and Cd2+ from aqueous wastes, Environ. Eng. Res., 27, 210355 (2021). https://doi.org/10.4491/eer.2021.355
  19. G. A. Kloster, M. Valiente, N. E. Marcovich, and M. A. Mosiewicki, Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide, Int. J. Biol. Macromol., 165 1286-1295 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.244
  20. M. Rajeswari, P. Agrawal, S. Pavithra, Priya, G. R. Sandhya, and G. M. Pavithra, Continuous biosorption of cadmium by Moringa olefera in a packed column, Biotechnol. Bioprocess Eng., 18, 321-325 (2013). https://doi.org/10.1007/s12257-012-0424-4
  21. M. Elmuntasir Ibrahim Ahmed, Selective Adsorption of Cadmium Species onto Organic Clay Using Experimental and Geochemical Speciation Modeling Data, Int. J. Eng. Technol., 8, 128-131 (2016). https://doi.org/10.7763/IJET.2016.V6.871
  22. K. Rao, M. Mohapatra, S. Anand, and P. Venkateswarlu, Review on cadmium removal from aqueous solutions, Int. J. Eng. Sci. Technol., 2, (2011).
  23. J. Kent and J. H. Tay, Treatment of 17αethinylestradiol, 4nonylphenol, and carbamazepine in wastewater using an aerobic granular sludge sequencing batch reactor, Sci. Total Environ., 652, 1270-1278 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.301
  24. J. J. Trivino, M. Gomez, J. Valenzuela, A. Vera, and V. Arancibia, Determination of a natural (17β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry, Sens. Actuators B Chem., 297, 126728 (2019). https://doi.org/10.1016/j.snb.2019.126728
  25. E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S. Jeong, and S.-J. Park, Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: Its adsorption mechanism study via spectroscopic and experimental approaches, J. Environ. Chem. Eng., 9, 106343 (2021). https://doi.org/10.1016/j.jece.2021.106343
  26. L. M. Weatherly and J. A. Gosse, Triclosan exposure, transformation, and human health effects, J. Toxicol. Environ. Health Part B., 20, 447-469 (2017). https://doi.org/10.1080/10937404.2017.1399306
  27. S. Bio and B. Nunes, Acute effects of diclofenac on zebrafish: Indications of oxidative effects and damages at environmentally realistic levels of exposure, Environ. Toxicol. Pharmacol., 78, 103394 (2020). https://doi.org/10.1016/j.etap.2020.103394
  28. J.-P. Chae, M. S. Park, Y.-S. Hwang, B.-H. Min, S.-H. Kim, H.-S. Lee, and M.-J. Park, Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos, Chemosphere, 120 (2015) 52-58. https://doi.org/10.1016/j.chemosphere.2014.05.063
  29. L. Xiang, Z. Xie, H. Guo, J. Song, D. Li, Y. Wang, S. Pan, S. Lin, Z. Li, J. Han, and W. Qiao, Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: Mechanism and toxicity assessment, Chemosphere, 283, 131156 (2021). https://doi.org/10.1016/j.chemosphere.2021.131156
  30. M. Ershad, M. A. Ameer, and D. Vearrier, Ibuprofen Toxicity, In: StatPearls. StatPearls Publishing (2021).
  31. O. E. Abdel-Gelil, and S. R. Mansour, Tetracycline and toxicity induced, Gastroenterol. Hepatol., 10, 177-179 (2019).
  32. J. R. Rochester, Bisphenol A and human health: A review of the literature, Reprod. Toxicol., 42, 132-155 (2013). https://doi.org/10.1016/j.reprotox.2013.08.008
  33. M. Saravanan, S. Karthika, A. Malarvizhi, and M. Ramesh, Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: Hematological, biochemical, ionoregulatory and enzymological responses, J. Hazard. Mater., 195, 188-194 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.029
  34. W. Li, R. Zhou, R. Zhou, J. Weerasinghe, T. Zhang, A. Gissibl, P. J. Cullen, R. Speight, and K. (Ken) Ostrikov, Insights into amoxicillin degradation in water by non-thermal plasmas, Chemosphere, 132757 (2021).
  35. T. O. Ajiboye, O. A. Oyewo, and D. C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: A review, Chemosphere, 262, 128379 (2021). https://doi.org/10.1016/j.chemosphere.2020.128379
  36. J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, and Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater., 400, 123142 (2020). https://doi.org/10.1016/j.jhazmat.2020.123142
  37. B. Szczepanik, Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review, Appl. Clay Sci., 141, 227-239, (2017). https://doi.org/10.1016/j.clay.2017.02.029
  38. R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, and H. He, Adsorbents based on montmorillonite for contaminant removal from water: A review, Appl. Clay Sci., 123, 239-258 (2016). https://doi.org/10.1016/j.clay.2015.12.024
  39. V. K. Gupta, I. Ali, Suhas, and D. Mohan, Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents, J. Colloid Interface Sci., 265, 257-264 (2003). https://doi.org/10.1016/S0021-9797(03)00467-3
  40. M. A. Khan, M. K. Uddin, R. Bushra, A. Ahmad, and S. A. Nabi, Synthesis and characterization of polyaniline Zr(IV) molybdophosphate for the adsorption of phenol from aqueous solution, React. Kinet. Mech. Catal., 113, 499-517 (2014). https://doi.org/10.1007/s11144-014-0751-x
  41. R. A. K. Rao and M. Kashifuddin, Adsorption properties of coriander seed powder (Coriandrum Sativum): extraction and pre-concentration of Pb(II), Cu(II) and Zn(II) Ions from aqueous solution, Adsorpt. Sci. Technol., 30, 127-146 (2012). https://doi.org/10.1260/0263-6174.30.2.127
  42. Lalhmunsiama, D. Tiwari, and S.-M. Lee, Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite, J. Environ. Radioact., 147, 76-84 (2015). https://doi.org/10.1016/j.jenvrad.2015.05.017
  43. S. M. Lee, Lalhmunsiama, and D. Tiwari, Sericite in the remediation of Cd(II)- and Mn(II)-contaminated waters: batch and column studies, Environ. Sci. Pollut. Res., 21, 3686-3696 (2014). https://doi.org/10.1007/s11356-013-2310-9
  44. K. H. Vardhan, P. S. Kumar, and R. C. Panda, A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, J. Mol. Liq., 290, 111197 (2019). https://doi.org/10.1016/j.molliq.2019.111197
  45. V.B. Yadav, R. Gadi, and S. Kalra, Clay based nanocomposites for removal of heavy metals from water: A review, J. Environ. Manage., 232, 803-817 (2019). https://doi.org/10.1016/j.jenvman.2018.11.120
  46. G. Crini, and P.-M. Badot, Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters, 191-192, Universite de Franche Comte Besancon, France (2010).
  47. R. Srinivasan, Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water, Adv. Mater. Sci. Eng., 2011, 1-17 (2011). https://doi.org/10.1155/2011/872531
  48. S. M. Lee and D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci., 59-60, 84-102 (2012). https://doi.org/10.1016/j.clay.2012.02.006
  49. D. Tiwari and S. M. Lee, Thanhmingliana, Hybrid materials in the decontamination of bisphenol A from aqueous solutions, RSC Adv.,4, 43921-43930 (2014).
  50. R. Malsawmdawngzela, Lalhmunsiama, D. Tiwari, and S. Lee, Synthesis of novel clay-based nanocomposite materials and its application in the remediation of arsenic contaminated water, Int. J. Environ. Sci. Technol. 19 (2022), https://doi.org/10.1007/s13762-022-04506-z.
  51. Thanhmingliana and D. Tiwari, Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micropollutant diclofenac sodium, Chem. Eng. J., 263, 364-373 (2015). https://doi.org/10.1016/j.cej.2014.10.102
  52. Y. Park, G. A. Ayoko, and R. L. Frost, Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media, J. Colloid Interface Sci., 354, 292-305 (2011). https://doi.org/10.1016/j.jcis.2010.09.068
  53. S. M. Lee, Thanhmingliana, and D. Tiwari, Hybrid materials precursor to natural clay in the attenuation of bisphenol A from aqueous solutions, J. Water Process Eng., 11, 46-54 (2016). https://doi.org/10.1016/j.jwpe.2016.03.007
  54. E. I. Unuabonah, and A. Taubert, Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment, Appl. Clay Sci., 99, 83-92 (2014). https://doi.org/10.1016/j.clay.2014.06.016
  55. D. L. Guerra, S. P. Oliveira, R. A. S. Silva, E. M. Silva, and A. C. Batista, Dielectric properties of organofunctionalized kaolinite clay and application in adsorption mercury cation, Ceram. Int., 38, 1687-1696 (2012). https://doi.org/10.1016/j.ceramint.2011.09.062
  56. H. He, Q. Zhou, W. N. Martens, T. J. Kloprogge, P. Yuan, Y. Xi, J. Zhu, and R. L. Frost, Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics, Clays Clay Miner., 54, 689-696 (2006). https://doi.org/10.1346/CCMN.2006.0540604
  57. N. N. Herrera, J.-M. Letoffe, J.-P. Reymond, and E. Bourgeat-Lami, Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes, J. Mater. Chem., 15, 863 (2005). https://doi.org/10.1039/b415618h
  58. A. Okada and A. Usuki, Twenty Years of Polymer-Clay Nanocomposites, Macromol. Mater. Eng., 291, 1449-1476 (2006). https://doi.org/10.1002/mame.200600260
  59. U. F. Alkaram, A. A. Mukhlis, and A. H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite, J. Hazard. Mater., 169, 324-332 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.153
  60. V. C. G. dos Santos, M. T. Grassi, and G. Abate, Sorption of Hg(II) by modified K10 montmorillonite: Influence of pH, ionic strength and the treatment with different cations, Geoderma., 237-238, 129-136 (2015). https://doi.org/10.1016/j.geoderma.2014.08.018
  61. E. Ruiz-Hitzky, M. Darder, F. M. Fernandes, E. Zatile, F. J. Palomares, and P. Aranda, Supported Graphene from Natural Resources: Easy Preparation and Applications, Adv. Mater., 23, 5250-5255 (2011). https://doi.org/10.1002/adma.201101988
  62. A. M. Awad, S. M. R. Shaikh, R. Jalab, M. H. Gulied, M. S. Nasser, A. Benamor, and S. Adham, Adsorption of organic pollutants by natural and modified clays: A comprehensive review, Sep. Purif. Technol., 228, 115719 (2019). https://doi.org/10.1016/j.seppur.2019.115719
  63. H. Chen, J. Zhao, A. Zhong, and Y. Jin, Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue, Chem. Eng. J., 174, 143-150 (2011). https://doi.org/10.1016/j.cej.2011.08.062
  64. M. Jiang, X. Jin, X.-Q. Lu, and Z. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252, 33-39 (2010). https://doi.org/10.1016/j.desal.2009.11.005
  65. X. Gu, L. J. Evans, and S. J. Barabash, Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite, Geochim. Cosmochim. Acta, 74, 5718-5728 (2010). https://doi.org/10.1016/j.gca.2010.07.016
  66. M. Malandrino, O. Abollino, A. Giacomino, M. Aceto, and E. Mentasti, Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands, J. Colloid Interface Sci., 299, 537-546 (2006). https://doi.org/10.1016/j.jcis.2006.03.011
  67. E. Padilla-Ortega, R. Leyva-Ramos, J. Mendoza-Barron, R. M. Guerrero-Coronado, A. Jacobo-Azuara, and A. Aragon-Pina, Adsorption of heavy metal ions from aqueous solution onto sepiolite, Adsorpt. Sci. Technol., 29, 569-584 (2011). https://doi.org/10.1260/0263-6174.29.6.569
  68. B. Anna, M. Kleopas, S. Constantine, F. Anestis, and B. Maria, Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems, Environ. Earth Sci., 73, 5435-5444 (2015). https://doi.org/10.1007/s12665-014-3798-0
  69. Sunil, B. M., Faziludeen, and Saifiya, Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil, Adv. Environ. Res., 4, 197-210 (2015). https://doi.org/10.12989/aer.2015.4.3.197
  70. L. Mahouachi, T. Rastogi, W.-U. Palm, I. Ghorbel-Abid, D. Ben Hassen Chehimi, and K. Kummerer, Natural clay as a sorbent to remove pharmaceutical micropollutants from wastewater, Chemosphere, 258, 127213 (2020). https://doi.org/10.1016/j.chemosphere.2020.127213
  71. T. M. Berhane, J. Levy, M. P. S. Krekeler, N. D. Danielson, and A. Stalcup, Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium, J. Hazard. Mater., 282, 183-193 (2015). https://doi.org/10.1016/j.jhazmat.2014.09.025
  72. Q. Wu, Z. Li, and H. Hong, Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite, Appl. Clay Sci., 74, 66-73 (2013). https://doi.org/10.1016/j.clay.2012.09.026
  73. A. A. Taha, M. A. Shreadah, H. F. Heiba, and A. M. Ahmed, Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: characterization, isotherm, kinetics, thermodynamics and application study: Adsorption of heavy metals under acidic conditions, Asia-Pac. J. Chem. Eng., 12, 292-306 (2017). https://doi.org/10.1002/apj.2072
  74. M. Barkat, S. Chegrouche, A. Mellah, B. Bensmain, D. Nibou, and M. Boufatit, application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions, J. Surf. Eng. Mater. Adv. Technol., 04, 210-226 (2014).
  75. S. Sen Gupta and K. G. Bhattacharyya, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, J. Environ. Manage., 87, (2008) 46-58. https://doi.org/10.1016/j.jenvman.2007.01.048
  76. O. Etci, N. Bektas and M. S. Oncel, Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite, Environ. Earth Sci., 61, 231-240 (2010). https://doi.org/10.1007/s12665-009-0338-4
  77. C.-J. Wang, Z. Li, and W.-T. Jiang, Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals, Appl. Clay Sci., 53, 723-728 (2011). https://doi.org/10.1016/j.clay.2011.06.014
  78. P.-H. Chang, Z. Li, W.-T. Jiang, C.-Y. Kuo, and J.-S. Jean, Adsorption of tetracycline on montmorillonite: influence of solution pH, temperature, and ionic strength, Desalin. Water Treat., 1-13, 1380-1392 (2014).
  79. P.-H. Chang, Z. Li, J.-S. Jean, W.-T. Jiang, C.-J. Wang, and K.-H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci., 67-68, 158-163 (2012). https://doi.org/10.1016/j.clay.2011.11.004
  80. S. K. Behera, S.-Y. Oh, and H.-S. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179, 684-691 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.056
  81. H. Mabrouki and D. E. Akretche, Diclofenac potassium removal from water by adsorption on natural and pillared clay, Desalin. Water Treat., 57, 6033-6043 (2016). https://doi.org/10.1080/19443994.2014.1002008
  82. M. Kaur and M. Datta, Diclofenac sodium adsorption onto montmorillonite: Adsorption equilibrium studies and drug release kinetics, Adsorpt. Sci. Technol., 32, 365-387 (2014). https://doi.org/10.1260/0263-6174.32.5.365
  83. E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics, Water Res., 43, 2419-2430 (2009). https://doi.org/10.1016/j.watres.2009.02.039
  84. H. Gallouze, D.-E. Akretche, C. Daniel, I. Coelhoso, and J. G. Crespo, Removal of synthetic estrogen from water by adsorption on modified bentonites, Environ. Eng. Sci., 38, 4-14 (2021). https://doi.org/10.1089/ees.2020.0048
  85. E. Bojemueller, A. Nennemann, and G. Lagaly, Enhanced pesticide adsorption by thermally modified bentonites, Appl. Clay Sci., 18, 277-284 (2001). https://doi.org/10.1016/S0169-1317(01)00027-8
  86. A. Gil, Y. El Mouzdahir, A. Elmchaouri, M. A. Vicente, and S. A. Korili, Equilibrium and thermodynamic investigation of methylene blue adsorption on thermal- and acid-activated clay minerals, Desalin. Water Treat., 51, 2881-2888 (2013). https://doi.org/10.1080/19443994.2012.748127
  87. R. Rusmin, B. Sarkar, B. Biswas, J. Churchman, Y. Liu, and R. Naidu, Structural, electrokinetic and surface properties of activated palygorskite for environmental application, Appl. Clay Sci., 134, 95-102 (2016). https://doi.org/10.1016/j.clay.2016.07.012
  88. J. A. Torres-Luna and J. G. Carriazo, Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay, Solid State Sci., 88, 29-35 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.12.006
  89. M. Toor, B. Jin, S. Dai, and V. Vimonses, Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater, J. Ind. Eng. Chem., 21, 653-661 (2015).. https://doi.org/10.1016/j.jiec.2014.03.033
  90. J. Nones, J. Nones, H. G. Riella, A. Poli, A. G. Trentin, and N. C. Kuhnen, Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death, Mater. Sci. Eng. C, 55, 530-537 (2015). https://doi.org/10.1016/j.msec.2015.05.069
  91. S. Aytas, M. Yurtlu, and R. Donat, Adsorption characteristic of U(VI) ion onto thermally activated bentonite, J. Hazard. Mater., 172, 667-674 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.049
  92. Q. Zuo, X. Gao, J. Yang, P. Zhang, G. Chen, Y. Li, K. Shi, and W. Wu, Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution, J. Taiwan Inst. Chem. Eng., 80, 754-760 (2017). https://doi.org/10.1016/j.jtice.2017.09.016
  93. L. Heller-Kallai, Chapter 7.2 Thermally Modified Clay Minerals, In: Dev. Clay Sci., Elsevier, 289-308 (2006).
  94. H. A. Talaat, N. M. El Defrawy, A. G. Abulnour, H. A. Hani, and A. Tawfik, Evaluation of heavy metals removal using some Egyptian clays, Int. Proc. Chem. Biol. Environ. Eng., 6, 37-42 (2011).
  95. E. Padilla-Ortega, N. Medellin-Castillo, and A. Robledo-Cabrera, Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II), J. Environ. Chem. Eng., 8, 103850 (2020). https://doi.org/10.1016/j.jece.2020.103850
  96. Z. Orolinova, A. Mockovciakova, S. Dolinska, and J. Briancin, EFFECT OF THERMAL TREATMENT ON THE BENTONITE PROPERTIES, Arch. Tech. Sci., 4, 49-56 (2012). https://doi.org/10.5825/afts.2012.0407.049O
  97. C. Bertagnolli, S. J. Kleinubing, and M. G. C. da Silva, Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds, Appl. Clay Sci., 53, 73-79 (2011). https://doi.org/10.1016/j.clay.2011.05.002
  98. M. G. A. Vieira, A. F. A. Neto, M. L. Gimenes, and M. G. C. da Silva, Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, J. Hazard. Mater., 177, 362-371 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.040
  99. V. Masindi and M. M. Ramakokovhu, The performance of thermally activated and vibratory ball milled South African bentonite clay for the removal of chromium ions from aqueous solution, Mater. Today Proc., 38, 964-974 (2021). https://doi.org/10.1016/j.matpr.2020.05.490
  100. S. T. Akar, Y. Yetimoglu, and T. Gedikbey, Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification, Desalination, 244, 97-108 (2009). https://doi.org/10.1016/j.desal.2008.04.040
  101. R. Antonelli, G. R. P. Malpass, M. G. C. da Silva, and M. G. A. Vieira, Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng., 8, 104553 (2020). https://doi.org/10.1016/j.jece.2020.104553
  102. A. Maged, J. Iqbal, S. Kharbish, I. S. Ismael, and A. Bhatnagar, Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies, J. Hazard. Mater., 384, (2020) 121320. https://doi.org/10.1016/j.jhazmat.2019.121320
  103. E. Gonzalez-Pradas, M. Socias-Viciana, M. D. Urena-Amate, A. Cantos-Molina, and M. Villafranca-Sanchez, Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites, Water Res., 39, 1849-1857 (2005). https://doi.org/10.1016/j.watres.2005.03.001
  104. V. A. A. Espana, B. Sarkar, B. Biswas, R. Rusmin, and R. Naidu, Environmental applications of thermally modified and acid activated clay minerals: Current status of the art, Environ. Technol. Innov., 13, 383-397 (2019). https://doi.org/10.1016/j.eti.2016.11.005
  105. K. G. Akpomie, and F. A. Dawodu, Acid-modified montmorillonite for sorption of heavy metals from automobile effluent, Beni-Suef Univ. J. Basic Appl. Sci., 5, 1-12 (2016). https://doi.org/10.1016/j.bjbas.2016.01.003
  106. C. Volzone, Retention of pollutant gases: Comparison between clay minerals and their modified products, Appl. Clay Sci., 36, 191-196 (2007). https://doi.org/10.1016/j.clay.2006.06.013
  107. W. T. Tsai, K. J. Hsien, and J. M. Yang, Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution, J. Colloid Interface Sci., 275, 428-433 (2004). https://doi.org/10.1016/j.jcis.2004.02.093
  108. D. Tiwari, Lalhmunsiama, S. I. Choi, and S. M. Lee, Activated sericite: An efficient and effective natural clay material for attenuation of cesium from aquatic environment, Pedosphere, 24, 731-742 (2014). https://doi.org/10.1016/s1002-0160(14)60060-6
  109. R. Shawabkeh, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24, 111-120 (2003). https://doi.org/10.1016/S0169-1317(03)00154-6
  110. T. Vengris, R. Binkien, and A. Sveikauskait, Nickel, copper and zinc removal from waste water by a modified clay sorbent, Appl. Clay Sci., 18, 183-190 (2001). https://doi.org/10.1016/S0169-1317(00)00036-3
  111. P. Komadel and J. Madejova, Acid Activation of Clay Minerals, In: F. Bergaya, B.K.G. Theng, G. Lagaly, Developments in Clay Science, 263-287, Elsevier (2013).
  112. M. Eloussaief and M. Benzina, Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions, J. Hazard. Mater., 178, 753-757 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.004
  113. P. Pushpaletha, S. Rugmini and M. Lalithambika, Correlation between surface properties and catalytic activity of clay catalysts, Appl. Clay Sci., 30, 141-153 (2005). https://doi.org/10.1016/j.clay.2005.03.011
  114. J. U. K. Oubagaranadin, Z. V. P. Murthy, and V. P. Mallapur, Removal of Cu(II) and Zn(II) from industrial wastewater by acid-activated montmorillonite-illite type of clay, Comptes Rendus Chim., 13, 1359-1363 (2010). https://doi.org/10.1016/j.crci.2010.05.024
  115. H. Chen, Y. Zhao and A. Wang, Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite, J. Hazard. Mater., 149, 346-354 (2007). https://doi.org/10.1016/j.jhazmat.2007.03.085
  116. Y. Bayrak, Y. Yesiloglu and U. Gecgel, Adsorption behavior of Cr(VI) on activated hazelnut shell ash and activated bentonite, Microporous Mesoporous Mater., 91, 107-110 (2006). https://doi.org/10.1016/j.micromeso.2005.11.010
  117. S. Arfaoui, N. Frini-Srasra, and E. Srasra, Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222, 474-481 (2008). https://doi.org/10.1016/j.desal.2007.03.014
  118. Y. Deng, F. Wu, B. Liu, X. Hu, and C. Sun, Sorptive removal of β-blocker propranolol from aqueous solution by modified attapulgite: Effect factors and sorption mechanisms, Chem. Eng. J., 174, 571-578 (2011). https://doi.org/10.1016/j.cej.2011.09.057
  119. H. Zaghouane-Boudiaf and M. Boutahala, Kinetic analysis of 2,4,5-trichlorophenol adsorption onto acid-activated montmorillonite from aqueous solution, Int. J. Miner. Process., 100, 72-78 (2011). https://doi.org/10.1016/j.minpro.2011.04.011
  120. B. Sarkar, Y. Xi, M. Megharaj, G. S. R. Krishnamurti, M. Bowman, H. Rose, and R. Naidu, Bioreactive Organoclay: A New Technology for Environmental Remediation, Crit. Rev. Environ. Sci. Technol., 42, 435-488 (2012). https://doi.org/10.1080/10643389.2010.518524
  121. M. Addy, B. Losey, R. Mohseni, E. Zlotnikov, and A. Vasiliev, Adsorption of heavy metal ions on mesoporous silica-modified montmorillonite containing a grafted chelate ligand, Appl. Clay Sci., 59-60, 115-120 (2012). https://doi.org/10.1016/j.clay.2012.02.012
  122. R. Celis, C. Trigo, G. Facenda, M. D. C. Hermosin, and J. Cornejo, Selective Modification of Clay Minerals for the Adsorption of Herbicides Widely Used in Olive Groves, J. Agric. Food Chem., 55, 6650-6658 (2007). https://doi.org/10.1021/jf070709q
  123. H. He, L. Ma, J. Zhu, R.L. Frost, B. K. G. Theng, and F. Bergaya, Synthesis of organoclays: A critical review and some unresolved issues, Appl. Clay Sci., 100, 22-28 (2014). https://doi.org/10.1016/j.clay.2014.02.008
  124. L. Groisman, Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays, Appl. Clay Sci., 24, 159-166 (2004). https://doi.org/10.1016/j.clay.2003.02.001
  125. V. A. Oyanedel-Craver and J. A. Smith, Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites, J. Hazard. Mater., 137, 1102-1114 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.051
  126. P. LeBaron, Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci., 15, 11-29 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  127. P. G. Slade and W. P. Gates, The swelling of HDTMA smectites as influenced by their preparation and layer charges, Appl. Clay Sci., 25, 93-101 (2004). https://doi.org/10.1016/j.clay.2003.07.007
  128. F. Bergaya and G. Lagaly, General introduction: clays, clay minerals, and clay science, Dev. Clay Sci., 1, 1-18 (2006). https://doi.org/10.1016/S1572-4352(05)01001-9
  129. G. Beall and M. Goss, Self-assembly of organic molecules on montmorillonite, Appl. Clay Sci., 27 179-186 (2004). https://doi.org/10.1016/j.clay.2004.06.006
  130. G. Gorrasi, M. Tortora, V. Vittoria, D. Kaempfer, and R. Mulhaupt, Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene, Polymer, 44, 3679-3685 (2003). https://doi.org/10.1016/S0032-3861(03)00284-2
  131. M. Kozak and L. Domka, Adsorption of the quaternary ammonium salts on montmorillonite, J. Phys. Chem. Solids, 65, 441-445 (2004). https://doi.org/10.1016/j.jpcs.2003.09.015
  132. J. Zhu, H. He, L. Zhu, X. Wen and F. Deng, Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR, J. Colloid Interface Sci., 286, 239-244 (2005). https://doi.org/10.1016/j.jcis.2004.12.048
  133. M. Ogawa, T. Handa, K. Kuroda and C. Kato, Formation of organoammonium-montmorillonites by solid-solid reactions, Chem. Lett., 19, 71-74 (1990). https://doi.org/10.1246/cl.1990.71
  134. S. Yoshimoto, F. Ohashi, and T. Kameyama, X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing, Solid State Commun., 136, 251-256 (2005). https://doi.org/10.1016/j.ssc.2005.08.017
  135. D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova, and J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interfaces, 9, 529-540 (2002). https://doi.org/10.1163/15685540260494100
  136. T. S. Anirudhan and M. Ramachandran, Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu(II), Zn(II), and Cd(II) adsorption from aqueous solutions and industry wastewaters, Ind. Eng. Chem. Res., 47, 6175-6184 (2008). https://doi.org/10.1021/ie070735d
  137. B. Cheknane, O. Bouras, M. Baudu, J.-P. Basly, and A. Cherguielaine, Granular inorgano-organo pillared clays (GIOCs): Preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions, Chem. Eng. J., 158, 528-534 (2010). https://doi.org/10.1016/j.cej.2010.01.043
  138. O. Bouras, J.-C. Bollinger, M. Baudu, and H. Khalaf, Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays, Appl. Clay Sci., 37, 240-250 (2007). https://doi.org/10.1016/j.clay.2007.01.009
  139. S.-Z. Li and P.-X. Wu, Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II), J. Hazard. Mater., 173, 62-70 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.047
  140. F. Zermane, O. Bouras, M. Baudu, and J.-P. Basly, Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay, J. Colloid Interface Sci., 350, 315-319 (2010). https://doi.org/10.1016/j.jcis.2010.06.040
  141. Thanhmingliana, C. Lalhriatpuia, D. Tiwari, and S.-M. Lee, Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies, Environ. Eng. Res., 21, 203-210 (2016). https://doi.org/10.4491/eer.2016.003
  142. D. Tiwari, W. Kim, M. Kim, S. K. Prasad, and S.-M. Lee, Organo-modified sericite in the remediation of phenol-contaminated waters, Desalin. Water Treat., 53, 446-451 (2015). https://doi.org/10.1080/19443994.2013.846562
  143. X. Jin, M. Jiang, J. Du, and Z. Chen, Removal of Cr(VI) from aqueous solution by surfactant-modified kaolinite, J. Ind. Eng. Chem., 20, 3025-3032 (2014). https://doi.org/10.1016/j.jiec.2013.11.038
  144. X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, and L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci., 97, 17-23 (2014). https://doi.org/10.1016/j.clay.2014.05.028
  145. J. Su, H.-G. Huang, X.-Y. Jin, X.-Q. Lu, and Z.-L. Chen, Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution, J. Hazard. Mater., 185, 63-70 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.122
  146. R. Mudzielwana, M.W. Gitari, and P. Ndungu, Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5, e02756 (2019). https://doi.org/10.1016/j.heliyon.2019.e02756
  147. S.M. Lee, Lalhmunsiama, Thanhmingliana, and D. Tiwari, Porous hybrid materials in the remediation of water contaminated with As(III) and As(V), Chem. Eng. J., 270, 496-507 (2015). https://doi.org/10.1016/j.cej.2015.02.053
  148. L. Zhu, and R. Zhu, Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water, Sep. Purif. Technol., 54, 71-76 (2007). https://doi.org/10.1016/j.seppur.2006.08.009
  149. Y. Chu, M. A. Khan, S. Zhu, M. Xia, W. Lei, F. Wang, and Y. Xu, Microstructural modification of organo-montmorillonite with Gemini surfactant containing four ammonium cations: molecular dynamics (MD) simulations and adsorption capacity for copper ions, J. Chem. Technol. Biotechnol., 94, 3585-3594 (2019). https://doi.org/10.1002/jctb.6162
  150. H. Hong, W.-T. Jiang, X. Zhang, L. Tie, and Z. Li, Adsorption of Cr(VI) on STAC-modified rectorite, Appl. Clay Sci., 42, 292-299 (2008). https://doi.org/10.1016/j.clay.2008.01.015
  151. I. Hamadneh, R. Abu-Zurayk, B. Abu-Irmaileh, A. Bozeya, and A. H. Al-Dujaili, Adsorption of Pb(II) on raw and organically modified Jordanian bentonite, Clay Miner., 50, 485-496 (2015). https://doi.org/10.1180/claymin.2015.050.4.05
  152. J. Hua, Synthesis and characterization of bentonite based inorgano-organo-composites and their performances for removing arsenic from water, Appl. Clay Sci., 114, 239-246 (2015). https://doi.org/10.1016/j.clay.2015.06.005
  153. S. Dultz, J.-H. An, and B. Riebe, Organic cation exchanged montmorillonite and vermiculite as adsorbents for Cr(VI): Effect of layer charge on adsorption properties, Appl. Clay Sci., 67-68, 125-133 (2012). https://doi.org/10.1016/j.clay.2012.05.004
  154. X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, and L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci., 97-98, 17-23 (2014). https://doi.org/10.1016/j.clay.2014.05.028
  155. K. Tohdee and L. Kaewsichan, Asadullah, Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, J. Environ. Chem. Eng., 6, 2821-2828 (2018). https://doi.org/10.1016/j.jece.2018.04.030
  156. X. Jin, S. Zha, S. Li, and Z. Chen, Simultaneous removal of mixed contaminants by organoclays - Amoxicillin and Cu(II) from aqueous solution, Appl. Clay Sci., 102, 196-201 (2014). https://doi.org/10.1016/j.clay.2014.09.040
  157. Q. Yang, M. Gao, Z. Luo, and S. Yang, Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain, Chem. Eng. J., 285, 27-38 (2016). https://doi.org/10.1016/j.cej.2015.09.114
  158. J. Wang, M. Gao, F. Ding, and T. Shen, Organo-vermiculites modified by heating and gemini pyridinium surfactants: Preparation, characterization and sulfamethoxazole adsorption, Colloids Surf. Physicochem. Eng. Asp., 546, 143-152 (2018). https://doi.org/10.1016/j.colsurfa.2018.03.014
  159. A. E. Burgos, T. A. Ribeiro-Santos, and R. M. Lago, Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 74, 663-671 (2016). https://doi.org/10.2166/wst.2016.207
  160. S. I. Rathnayake, Y. Xi, R. L. Frost, and G. A. Ayoko, Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A, J. Colloid Interface Sci., 470, (2016) 183-195. https://doi.org/10.1016/j.jcis.2016.02.034
  161. A. (Fern) Phuekphong, K. Imwiset, and M. Ogawa, Adsorption of Triclosan onto Organically Modified-Magadiite and Bentonite, J. Inorg. Organomet. Polym. Mater., 31, 1902-1911 (2021). https://doi.org/10.1007/s10904-021-01919-0
  162. H. He, Q. Tao, J. Zhu, P. Yuan, W. Shen, and S. Yang, Silylation of clay mineral surfaces, Appl. Clay Sci., 71, 15-20 (2013). https://doi.org/10.1016/j.clay.2012.09.028
  163. A. Di Gianni, E. Amerio, O. Monticelli, and R. Bongiovanni, Preparation of polymer/clay mineral nanocomposites via dispersion of silylated montmorillonite in a UV curable epoxy matrix, Appl. Clay Sci., 42, 116-124 (2008). https://doi.org/10.1016/j.clay.2007.12.011
  164. Negrete, J.-M. Letoffe, J.-L. Putaux, L. David, and E. Bourgeat-Lami, Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites, Langmuir, 20, 1564-1571 (2004). https://doi.org/10.1021/la0349267
  165. W. Shen, H. He, J. Zhu, P. Yuan, Y. Ma, and X. Liang, Preparation and characterization of 3-aminopropyltriethoxysilane grafted montmorillonite and acid-activated montmorillonite, Sci. Bull., 54, 265-271 (2009). https://doi.org/10.1007/s11434-008-0361-y
  166. F. Piscitelli, P. Posocco, R. Toth, M. Fermeglia, S. Pricl, G. Mensitieri, and M. Lavorgna, Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length, J. Colloid Interface Sci. 351(1), 108-115 (2010) https://doi.org/10.1016/j.jcis.2010.07.059
  167. S. B. Y. Abeywardena, S. Perera, K. M. Nalin de Silva, and N. P. Tissera, A facile method to modify bentonite nanoclay with silane, Int. Nano Lett., 7, 237-241 (2017). https://doi.org/10.1007/s40089-017-0214-2
  168. M. Monasterio, J. J. Gaitero, E. Erkizia, A. M. Guerrero Bustos, L. A. Miccio, J. S. Dolado, and S. Cerveny, Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C-S-H) gel, J. Colloid Interface Sci., 450, 109-118 (2015). https://doi.org/10.1016/j.jcis.2015.02.066
  169. A. Xue, S. Zhou, Y. Zhao, X. Lu, and P. Han, Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes, J. Hazard. Mater., 194, 7-14 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.018
  170. A. M. Shanmugharaj, K. Y. Rhee, and S. H. Ryu, Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials, J. Colloid Interface Sci., 298, 854-859 (2006). https://doi.org/10.1016/j.jcis.2005.12.049
  171. L. M. Daniel, R. L. Frost, and H. Y. Zhu, Edge-modification of laponite with dimethyl-octylmethoxysilane, J. Colloid Interface Sci., 321, 302-309 (2008). https://doi.org/10.1016/j.jcis.2008.01.032
  172. H. He, J. Duchet, J. Galy, and J.-F. Gerard, Grafting of swelling clay materials with 3-aminopropyltriethoxysilane, J. Colloid Interface Sci., 288, 171-176 (2005). https://doi.org/10.1016/j.jcis.2005.02.092
  173. W. Carvalho, C. Vignado, and J. Fontana, Ni(II) removal from aqueous effluents by silylated clays, J. Hazard. Mater., 153, 1240-1247 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.083
  174. T. Sahan, F. Erol, and S. Yilmaz, Mercury(II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization, Microchem. J., 138, 360-368 (2018). https://doi.org/10.1016/j.microc.2018.01.028
  175. X. Liang, Y. Xu, G. Sun, L. Wang, Y. Sun, Y. Sun, and X. Qin, Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium, Chem. Eng. J., 174, 436-444 (2011). https://doi.org/10.1016/j.cej.2011.08.060
  176. Lalhmunsiama, D. Tiwari, and S.-M. Lee, Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights, Chem. Eng. J., 283, 1414-1423 (2016). https://doi.org/10.1016/j.cej.2015.08.072
  177. R. Malsawmdawngzela, D. Tiwari, and Lalhmunsiama, Facile synthesis and implications of novel hydrophobic materials: Newer insights of pharmaceuticals removal, Int. J. Biochem. Biophy., 58(6), 520-531 (2021).
  178. R. Malsawmdawngzela, L. Siama, D. Tiwari, S.-M. Lee, and D.-J. Kim, Efficient and selective use of functionalized material in the decontamination of water: removal of emerging micro-pollutants from aqueous wastes, Environ. Technol. 1-15 (2021), https://doi.org/10.1080/09593330.2021.1994654.
  179. X. Liang, J. Han, Y. Xu, L. Wang, Y. Sun, and X. Tan, Sorption of Cd2+ on mercapto and amino functionalized palygorskite, Appl. Surf. Sci., 322, 194-201 (2014). https://doi.org/10.1016/j.apsusc.2014.10.092
  180. F. H. do Nascimento, D.M. de Souza Costa, and J. C. Masini, Evaluation of thiol-modified vermiculite for removal of Hg(II) from aqueous solutions, Appl. Clay Sci., 124-125, 227-235 (2016). https://doi.org/10.1016/j.clay.2016.02.017
  181. H. Cui, Y. Qian, Q. Li, Z. Wei, and J. Zhai, Fast removal of Hg(II) ions from aqueous solution by amine-modified attapulgite, Appl. Clay Sci., 72, 84-90 (2013). https://doi.org/10.1016/j.clay.2013.01.003
  182. V. Marjanovic, S. Lazarevic, I. Jankovic-Castvan, B. Potkonjak, D. Janackovic, and R. Petrovic, Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites, Chem. Eng. J., 166, 198-206 (2011). https://doi.org/10.1016/j.cej.2010.10.062
  183. S. Yilmaz, T. Sahan, and A. Karabakan, Response surface approach for optimization of Hg (II) adsorption by 3-mercaptopropyl trimethoxysilane-modified kaolin minerals from aqueous solution, Korean J. Chem. Eng., 34, 2225-2235 (2017). https://doi.org/10.1007/s11814-017-0116-z
  184. U. Ecer, S. Yilmaz, and T. Sahan, Highly efficient Cd(II) adsorption using mercapto-modified bentonite as a novel adsorbent: an experimental design application based on response surface methodology for optimization, Water Sci. Technol., 78, 1348-1360 (2018). https://doi.org/10.2166/wst.2018.400
  185. J. Han, X. Liang, Y. Xu, and Y. Xu, Removal of Cu2+ from aqueous solution by adsorption onto mercapto functionalized palygorskite, J. Ind. Eng. Chem., 23, 307-315 (2015).. https://doi.org/10.1016/j.jiec.2014.08.034
  186. T. S. Anirudhan, S. Jalajamony, and S. S. Sreekumari, Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites, Appl. Clay Sci., 65-66, 67-71 (2012). https://doi.org/10.1016/j.clay.2012.06.005
  187. T. Phothitontimongkol, N. Siebers, N. Sukpirom, and F. Unob, Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution, Appl. Clay Sci., 43, 343-349 (2009). https://doi.org/10.1016/j.clay.2008.09.016
  188. T. Undabeytia, F. Madrid, J. Vazquez, and J. I. Perez-Martinez, Grafted Sepiolites for the Removal of Pharmaceuticals in Water Treatment, Clays Clay Miner., 67, 173-182 (2019). https://doi.org/10.1007/s42860-019-00013-4
  189. Lalhmunsiama, R. R. Pawar, A. Chowdhury, Zirlianngura, and S. M. Lee, Removal of emerging micropollutants from water using hybrid material precursor to natural sericite clay, Int. J. Biochem. Biophy., 58 (2021).
  190. R. Malsawmdawngzela and D. Tiwari, 17α-Ethinylestradiol elimination using synthesized and dense nanocomposite materials: Mechanism and real matrix treatment, Korean J. Chem. Eng., 39, 646-654 (2022). https://doi.org/10.1007/s11814-021-0958-2
  191. Z. Dankova, A. Bekenyiova, I. Styriakova and E. Fedorova, Study of Cu(II) Adsorption by Siderite and Kaolin, Procedia Earth Planet. Sci., 15, 821-826 (2015). https://doi.org/10.1016/j.proeps.2015.08.131
  192. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  193. D. J. L. Guerra, I. Mello, R. Resende, and R. Silva, Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: Equilibrium, kinetic, pH, and thermodynamic effects, Water Resour. Ind., 4, 32-50 (2013). https://doi.org/10.1016/j.wri.2013.11.001
  194. Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, and D. R. Paul, Clay-Based Polymer Nanocomposites: Research and Commercial Development, J. Nanosci. Nanotechnol., 5, 1574-1592 (2005). https://doi.org/10.1166/jnn.2005.411
  195. A.S.K. Kumar, S. Kalidhasan, V. Rajesh, and N. Rajesh, Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater, Ind. Eng. Chem. Res., 51, 58-69 (2012). https://doi.org/10.1021/ie201349h
  196. Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E. K. Wujcik, and Z. Guo, Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions, Polymer, 128, 12-23 (2017). https://doi.org/10.1016/j.polymer.2017.09.009
  197. A. Soliemanzadeh and M. Fekri, The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative parameters and soil experiments, Microporous Mesoporous Mater., 239, 60-69 (2017). https://doi.org/10.1016/j.micromeso.2016.09.050
  198. K. G. Bhattacharyya, S. S. Gupta, Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution, Sep. Purif. Technol., 50, 388-397 (2006). https://doi.org/10.1016/j.seppur.2005.12.014
  199. V. N. Tirtom, A. Dincer, S. Becerik, T. Aydemir, and A. Celik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution, Chem. Eng. J., 197, 379-386 (2012). https://doi.org/10.1016/j.cej.2012.05.059
  200. Y.-J. Shi, X.-H. Wang, Z. Qi, M.-H. Diao, M.-M. Gao, S.-F. Xing, S.-G. Wang, and X.-C. Zhao, Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules, J. Hazard. Mater., 191, 103-109 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.048
  201. S. Mnasri-Ghnimi, and N. Frini-Srasra, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179, 105151 (2019). https://doi.org/10.1016/j.clay.2019.105151
  202. Q. Wang, X. Chang, D. Li, Z. Hu, R. Li, and Q. He, Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite, J. Hazard. Mater., 186, 1076-1081 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.107
  203. C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, and T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chem. Eng. J., 149, 319-324 (2009). https://doi.org/10.1016/j.cej.2008.11.025
  204. M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep., 28, 1-63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  205. G. Beyer, Nanocomposites: a new class of flame retardants for polymers, Plast. Addit. Compd., 4, 22-28 (2002). https://doi.org/10.1016/S1464-391X(02)80151-9
  206. H. R. Fischer, L. H. Gielgens, and T. P. M. Koster, Nanocomposites from polymers and layered minerals, MRS Proc., 519, 117 (1998). https://doi.org/10.1557/PROC-519-117
  207. E. M. S. Azzam, Gh. Eshaq, A. M. Rabie, A. A. Bakr, A. A. Abd-Elaal, A. E. El Metwally, and S. M. Tawfik, Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution, Int. J. Biol. Macromol., 89, 507-517 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.004
  208. K. Z. Setshedi, M. Bhaumik, S. Songwane, M. S. Onyango, and A. Maity, Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, Chem. Eng. J., 222, 186-197 (2013). https://doi.org/10.1016/j.cej.2013.02.061
  209. B. K. Kizilduman, M. Alkan, M. Dogan, and Y. Turhan, Al-Pillared-Montmorillonite (AlPMt)/Poly(Methyl Methacrylate)(PMMA) Nanocomposites: The effects of solvent types and synthesis methods, Adv. Mater. Sci., 17, 5-23 (2017).
  210. R. Fu, Y. Yang, Z. Xu, X. Zhang, X. Guo, and D. Bi, The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI), Chemosphere, 138, 726-734 (2015). https://doi.org/10.1016/j.chemosphere.2015.07.051
  211. S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee, and M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism, Chem. Eng. J., 243, 14-23 (2014). https://doi.org/10.1016/j.cej.2013.12.049
  212. C.M. Futalan, C.-C. Kan, M.L. Dalida, K.-J. Hsien, C. Pascua, and M.-W. Wan, Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite, Carbohydr. Polym., 83, 528-536 (2011). https://doi.org/10.1016/j.carbpol.2010.08.013
  213. A. B. Dukic, K. R. Kumric, N. S. Vukelic, M. S. Dimitrijevic, Z. D. Bascarevic, S. V. Kurko, and L. Lj. Matovic, Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite-kaolinite/TiO2 composite, Appl. Clay Sci., 103, 20-27 (2015). https://doi.org/10.1016/j.clay.2014.10.021
  214. A. Ramesh, H. Hasegawa, T. Maki, and K. Ueda, Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite, Sep. Purif. Technol., 56, 90-100 (2007). https://doi.org/10.1016/j.seppur.2007.01.025
  215. H. A. Sani, M. B. Ahmad, M. Z. Hussein, N. A. Ibrahim, A. Musa, and T. A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions, Process Saf. Environ. Prot., 109, 97-105 (2017). https://doi.org/10.1016/j.psep.2017.03.024
  216. L. Chen, P. Wu, M. Chen, X. Lai, Z. Ahmed, N. Zhu, Z. Dang, Y. Bi, and T. Liu, Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead, Appl. Clay Sci., 159, 74-82 (2018). https://doi.org/10.1016/j.clay.2017.12.050
  217. A. C. S. Alcantara, M. Darder, P. Aranda, and E. Ruiz-Hitzky, Polysaccharide-fibrous clay bionanocomposites, Appl. Clay Sci., 96, 2-8 (2014). https://doi.org/10.1016/j.clay.2014.02.018
  218. A. Olad, M. Bastanian, and H. Bakht Khosh Hagh, Thermodynamic and kinetic studies of removal process of hexavalent chromium ions from water by using bio-conducting starch-montmorillonite/polyaniline nanocomposite, J. Inorg. Organomet. Polym. Mater., 29, 1916-1926 (2019). https://doi.org/10.1007/s10904-019-01152-w
  219. S. Piri, Z. A. Zanjani, F. Piri, A. Zamani, M. Yaftian, and M. Davari, Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study, J. Environ. Health Sci. Eng., 14, 20 (2016). https://doi.org/10.1186/s40201-016-0261-z
  220. X. Wang, L. Yang, J. Zhang, C. Wang, and Q. Li, Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions, Chem. Eng. J., 251, 404-412 (2014). https://doi.org/10.1016/j.cej.2014.04.089
  221. T. H. Vu, T. M. V. Ngo, T. T. A. Duong, T. H. L. Nguyen, X. T. Mai, T. H. N. Pham, T. P. Le, and T. H. Tran, Removal of tetracycline from aqueous solution using nanocomposite based on polyanion-modified laterite material, J. Anal. Methods Chem., 2020, 1-9 (2020).
  222. M. Chauhan, V. K. Saini, and S. Suthar, Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water, J. Hazard. Mater., 399, 122832 (2020). https://doi.org/10.1016/j.jhazmat.2020.122832
  223. I. A. Shabtai and Y. G. Mishael, Polycyclodextrin-clay composites: regenerable dual-site sorbents for bisphenol a removal from treated wastewater, ACS Appl. Mater. Interfaces., 10, 27088-27097 (2018). https://doi.org/10.1021/acsami.8b09715
  224. X. Jin, M. Zheng, B. Sarkar, R. Naidu, and Z. Chen, Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2,4-dichlorophenol from aqueous solution, Appl. Clay Sci., 134, 89-94 (2016). https://doi.org/10.1016/j.clay.2016.09.036
  225. A. Ely, M. Baudu, J.-P. Basly, and M. O. S. O. Kankou, Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules, J. Hazard. Mater., 171, 405-409 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.015
  226. Y. Hu, C. Pan, X. Zheng, S. Liu, F. Hu, L. Xu, G. Xu, and X. Peng, Removal of ciprofloxacin with aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs): kinetics, isotherms, and BBD model, Water, 12, 905 (2020). https://doi.org/10.3390/w12030905
  227. T. M. Salem Attia, X. L. Hu, and D. Q. Yin, Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies, Chemosphere, 93, 2076-2085 (2013). https://doi.org/10.1016/j.chemosphere.2013.07.046