References
- M. Taseidifar, F. Makavipour, R. M. Pashley, and A. F. M. M. Rahman, Removal of heavy metal ions from water using ion flotation, Environ. Technol. Innov., 8, 182-190 (2017). https://doi.org/10.1016/j.eti.2017.07.002
- Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, and X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review, Environ. Sci. Technol., 50, 7290-7304 (2016). https://doi.org/10.1021/acs.est.6b01897
- H. Bhandari, S. Garg, and R. Gaba, Advanced nanocomposites for removal of heavy metals from wastewater, Macromol. Symp., 397, 2000337 (2021). https://doi.org/10.1002/masy.202000337
- K. Buruga, H. Song, J. Shang, N. Bolan, T. K. Jagannathan, and K.-H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water, J. Hazard. Mater., 379, 120584 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.067
- I. G. Wenten, K. Khoiruddin, A. K. Wardani, and I. N. Widiasa, Synthetic polymer-based membranes for heavy metal removal. In: A. M. Ismail, W. N. W. Salleh, N. Yusof, Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, 71-101 Elsevier (2020).
- R. Sabouni and H. Gomaa, Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO, Environ. Sci. Pollut. Res., 26, 5372-5380 (2019). https://doi.org/10.1007/s11356-018-4051-2
- Z. Tousova, B. Vrana, M. Smutna, J. Novak, V. Klucarova, R. Grabic, J. Slobodnik, J. P. Giesy, and K. Hilscherova, Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis, Sci. Total Environ., 650, 1599-1612 (2019). https://doi.org/10.1016/j.scitotenv.2018.08.336
- L. L. S. Silva, C. G. Moreira, B. A. Curzio, and F. V. da Fonseca, Micropollutant removal from water by membrane and advanced oxidation processes-A review, J. Water Resour. Prot., 9, 411-431 (2017). https://doi.org/10.4236/jwarp.2017.95027
- A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S. M. Lee, Nanocomposite thin films Ag0(NP)/TiO2 in the efficient removal of micro-pollutants from aqueous solutions: A case study of tetracycline and sulfamethoxazole removal, J. Environ. Manage., 220, 96-108 (2018). https://doi.org/10.1016/j.jenvman.2018.05.019
- M. Hadavifar, N. Bahramifar, H. Younesi, and Q. Li, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chem. Eng. J., 237, 217-228 (2014). https://doi.org/10.1016/j.cej.2013.10.014
- USEPA, National Primary Drinking Water Regulation Table, (2001).
- H. Zeng, L. Wang, D. Zhang, F. Wang, V. K. Sharma, and C. Wang, Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution, J. Colloid Interface Sci., 554, 479-487 (2019). https://doi.org/10.1016/j.jcis.2019.07.029
- I. Ogbu, K. Akpomie, A. Osunkunle, and S. Eze, Sawdust-kaolinite composite as efficient sorbent for heavy metal ions, Bangladesh J. Sci. Ind. Res., 54, 99-110 (2019). https://doi.org/10.3329/bjsir.v54i1.40736
- R. R. Pawar, Lalhmunsiama, H C. Bajaj, and S.-M. Lee, Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies, J. Ind. Eng. Chem., 34, 213-223 (2016). https://doi.org/10.1016/j.jiec.2015.11.014
- WHO, Guidelines for drinking-water quality: First addendum to volume 1, World Health Organization; 3rd Ed. 188, Geneva (2006).
- Y. Bendezu Roca and W. S. Fuentes, Use of nanoclay as an adsorbent to remove Cu(II) from acid mine drainage (amd), Chem. Eng. Trans., 73, 241-246 (2019).
- K. C. Nebagha, K. Ziat, L. Rghioui, M. Khayet, M. Saidi, K. Aboumaria, A. El Hourch, and S. Sebti, Adsorptive removal of copper (II) from aqueous solutions using low cost Moroccan adsorbent. Part I: Parameters influencing Cu (II) adsorption, J. Mater. Env. Sci., 6, 3022-3033 (2015).
- R. Malsawmdawngzela, Lalhmunsiama, and D. Tiwari, Novel and highly efficient functionalized bentonite for elimination of Cu2+ and Cd2+ from aqueous wastes, Environ. Eng. Res., 27, 210355 (2021). https://doi.org/10.4491/eer.2021.355
- G. A. Kloster, M. Valiente, N. E. Marcovich, and M. A. Mosiewicki, Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide, Int. J. Biol. Macromol., 165 1286-1295 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.244
- M. Rajeswari, P. Agrawal, S. Pavithra, Priya, G. R. Sandhya, and G. M. Pavithra, Continuous biosorption of cadmium by Moringa olefera in a packed column, Biotechnol. Bioprocess Eng., 18, 321-325 (2013). https://doi.org/10.1007/s12257-012-0424-4
- M. Elmuntasir Ibrahim Ahmed, Selective Adsorption of Cadmium Species onto Organic Clay Using Experimental and Geochemical Speciation Modeling Data, Int. J. Eng. Technol., 8, 128-131 (2016). https://doi.org/10.7763/IJET.2016.V6.871
- K. Rao, M. Mohapatra, S. Anand, and P. Venkateswarlu, Review on cadmium removal from aqueous solutions, Int. J. Eng. Sci. Technol., 2, (2011).
- J. Kent and J. H. Tay, Treatment of 17αethinylestradiol, 4nonylphenol, and carbamazepine in wastewater using an aerobic granular sludge sequencing batch reactor, Sci. Total Environ., 652, 1270-1278 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.301
- J. J. Trivino, M. Gomez, J. Valenzuela, A. Vera, and V. Arancibia, Determination of a natural (17β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry, Sens. Actuators B Chem., 297, 126728 (2019). https://doi.org/10.1016/j.snb.2019.126728
- E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S. Jeong, and S.-J. Park, Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: Its adsorption mechanism study via spectroscopic and experimental approaches, J. Environ. Chem. Eng., 9, 106343 (2021). https://doi.org/10.1016/j.jece.2021.106343
- L. M. Weatherly and J. A. Gosse, Triclosan exposure, transformation, and human health effects, J. Toxicol. Environ. Health Part B., 20, 447-469 (2017). https://doi.org/10.1080/10937404.2017.1399306
- S. Bio and B. Nunes, Acute effects of diclofenac on zebrafish: Indications of oxidative effects and damages at environmentally realistic levels of exposure, Environ. Toxicol. Pharmacol., 78, 103394 (2020). https://doi.org/10.1016/j.etap.2020.103394
- J.-P. Chae, M. S. Park, Y.-S. Hwang, B.-H. Min, S.-H. Kim, H.-S. Lee, and M.-J. Park, Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos, Chemosphere, 120 (2015) 52-58. https://doi.org/10.1016/j.chemosphere.2014.05.063
- L. Xiang, Z. Xie, H. Guo, J. Song, D. Li, Y. Wang, S. Pan, S. Lin, Z. Li, J. Han, and W. Qiao, Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: Mechanism and toxicity assessment, Chemosphere, 283, 131156 (2021). https://doi.org/10.1016/j.chemosphere.2021.131156
- M. Ershad, M. A. Ameer, and D. Vearrier, Ibuprofen Toxicity, In: StatPearls. StatPearls Publishing (2021).
- O. E. Abdel-Gelil, and S. R. Mansour, Tetracycline and toxicity induced, Gastroenterol. Hepatol., 10, 177-179 (2019).
- J. R. Rochester, Bisphenol A and human health: A review of the literature, Reprod. Toxicol., 42, 132-155 (2013). https://doi.org/10.1016/j.reprotox.2013.08.008
- M. Saravanan, S. Karthika, A. Malarvizhi, and M. Ramesh, Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: Hematological, biochemical, ionoregulatory and enzymological responses, J. Hazard. Mater., 195, 188-194 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.029
- W. Li, R. Zhou, R. Zhou, J. Weerasinghe, T. Zhang, A. Gissibl, P. J. Cullen, R. Speight, and K. (Ken) Ostrikov, Insights into amoxicillin degradation in water by non-thermal plasmas, Chemosphere, 132757 (2021).
- T. O. Ajiboye, O. A. Oyewo, and D. C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: A review, Chemosphere, 262, 128379 (2021). https://doi.org/10.1016/j.chemosphere.2020.128379
- J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, and Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater., 400, 123142 (2020). https://doi.org/10.1016/j.jhazmat.2020.123142
- B. Szczepanik, Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review, Appl. Clay Sci., 141, 227-239, (2017). https://doi.org/10.1016/j.clay.2017.02.029
- R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, and H. He, Adsorbents based on montmorillonite for contaminant removal from water: A review, Appl. Clay Sci., 123, 239-258 (2016). https://doi.org/10.1016/j.clay.2015.12.024
- V. K. Gupta, I. Ali, Suhas, and D. Mohan, Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents, J. Colloid Interface Sci., 265, 257-264 (2003). https://doi.org/10.1016/S0021-9797(03)00467-3
- M. A. Khan, M. K. Uddin, R. Bushra, A. Ahmad, and S. A. Nabi, Synthesis and characterization of polyaniline Zr(IV) molybdophosphate for the adsorption of phenol from aqueous solution, React. Kinet. Mech. Catal., 113, 499-517 (2014). https://doi.org/10.1007/s11144-014-0751-x
- R. A. K. Rao and M. Kashifuddin, Adsorption properties of coriander seed powder (Coriandrum Sativum): extraction and pre-concentration of Pb(II), Cu(II) and Zn(II) Ions from aqueous solution, Adsorpt. Sci. Technol., 30, 127-146 (2012). https://doi.org/10.1260/0263-6174.30.2.127
- Lalhmunsiama, D. Tiwari, and S.-M. Lee, Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite, J. Environ. Radioact., 147, 76-84 (2015). https://doi.org/10.1016/j.jenvrad.2015.05.017
- S. M. Lee, Lalhmunsiama, and D. Tiwari, Sericite in the remediation of Cd(II)- and Mn(II)-contaminated waters: batch and column studies, Environ. Sci. Pollut. Res., 21, 3686-3696 (2014). https://doi.org/10.1007/s11356-013-2310-9
- K. H. Vardhan, P. S. Kumar, and R. C. Panda, A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, J. Mol. Liq., 290, 111197 (2019). https://doi.org/10.1016/j.molliq.2019.111197
- V.B. Yadav, R. Gadi, and S. Kalra, Clay based nanocomposites for removal of heavy metals from water: A review, J. Environ. Manage., 232, 803-817 (2019). https://doi.org/10.1016/j.jenvman.2018.11.120
- G. Crini, and P.-M. Badot, Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters, 191-192, Universite de Franche Comte Besancon, France (2010).
- R. Srinivasan, Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water, Adv. Mater. Sci. Eng., 2011, 1-17 (2011). https://doi.org/10.1155/2011/872531
- S. M. Lee and D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci., 59-60, 84-102 (2012). https://doi.org/10.1016/j.clay.2012.02.006
- D. Tiwari and S. M. Lee, Thanhmingliana, Hybrid materials in the decontamination of bisphenol A from aqueous solutions, RSC Adv.,4, 43921-43930 (2014).
- R. Malsawmdawngzela, Lalhmunsiama, D. Tiwari, and S. Lee, Synthesis of novel clay-based nanocomposite materials and its application in the remediation of arsenic contaminated water, Int. J. Environ. Sci. Technol. 19 (2022), https://doi.org/10.1007/s13762-022-04506-z.
- Thanhmingliana and D. Tiwari, Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micropollutant diclofenac sodium, Chem. Eng. J., 263, 364-373 (2015). https://doi.org/10.1016/j.cej.2014.10.102
- Y. Park, G. A. Ayoko, and R. L. Frost, Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media, J. Colloid Interface Sci., 354, 292-305 (2011). https://doi.org/10.1016/j.jcis.2010.09.068
- S. M. Lee, Thanhmingliana, and D. Tiwari, Hybrid materials precursor to natural clay in the attenuation of bisphenol A from aqueous solutions, J. Water Process Eng., 11, 46-54 (2016). https://doi.org/10.1016/j.jwpe.2016.03.007
- E. I. Unuabonah, and A. Taubert, Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment, Appl. Clay Sci., 99, 83-92 (2014). https://doi.org/10.1016/j.clay.2014.06.016
- D. L. Guerra, S. P. Oliveira, R. A. S. Silva, E. M. Silva, and A. C. Batista, Dielectric properties of organofunctionalized kaolinite clay and application in adsorption mercury cation, Ceram. Int., 38, 1687-1696 (2012). https://doi.org/10.1016/j.ceramint.2011.09.062
- H. He, Q. Zhou, W. N. Martens, T. J. Kloprogge, P. Yuan, Y. Xi, J. Zhu, and R. L. Frost, Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics, Clays Clay Miner., 54, 689-696 (2006). https://doi.org/10.1346/CCMN.2006.0540604
- N. N. Herrera, J.-M. Letoffe, J.-P. Reymond, and E. Bourgeat-Lami, Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes, J. Mater. Chem., 15, 863 (2005). https://doi.org/10.1039/b415618h
- A. Okada and A. Usuki, Twenty Years of Polymer-Clay Nanocomposites, Macromol. Mater. Eng., 291, 1449-1476 (2006). https://doi.org/10.1002/mame.200600260
- U. F. Alkaram, A. A. Mukhlis, and A. H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite, J. Hazard. Mater., 169, 324-332 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.153
- V. C. G. dos Santos, M. T. Grassi, and G. Abate, Sorption of Hg(II) by modified K10 montmorillonite: Influence of pH, ionic strength and the treatment with different cations, Geoderma., 237-238, 129-136 (2015). https://doi.org/10.1016/j.geoderma.2014.08.018
- E. Ruiz-Hitzky, M. Darder, F. M. Fernandes, E. Zatile, F. J. Palomares, and P. Aranda, Supported Graphene from Natural Resources: Easy Preparation and Applications, Adv. Mater., 23, 5250-5255 (2011). https://doi.org/10.1002/adma.201101988
- A. M. Awad, S. M. R. Shaikh, R. Jalab, M. H. Gulied, M. S. Nasser, A. Benamor, and S. Adham, Adsorption of organic pollutants by natural and modified clays: A comprehensive review, Sep. Purif. Technol., 228, 115719 (2019). https://doi.org/10.1016/j.seppur.2019.115719
- H. Chen, J. Zhao, A. Zhong, and Y. Jin, Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue, Chem. Eng. J., 174, 143-150 (2011). https://doi.org/10.1016/j.cej.2011.08.062
- M. Jiang, X. Jin, X.-Q. Lu, and Z. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252, 33-39 (2010). https://doi.org/10.1016/j.desal.2009.11.005
- X. Gu, L. J. Evans, and S. J. Barabash, Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite, Geochim. Cosmochim. Acta, 74, 5718-5728 (2010). https://doi.org/10.1016/j.gca.2010.07.016
- M. Malandrino, O. Abollino, A. Giacomino, M. Aceto, and E. Mentasti, Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands, J. Colloid Interface Sci., 299, 537-546 (2006). https://doi.org/10.1016/j.jcis.2006.03.011
- E. Padilla-Ortega, R. Leyva-Ramos, J. Mendoza-Barron, R. M. Guerrero-Coronado, A. Jacobo-Azuara, and A. Aragon-Pina, Adsorption of heavy metal ions from aqueous solution onto sepiolite, Adsorpt. Sci. Technol., 29, 569-584 (2011). https://doi.org/10.1260/0263-6174.29.6.569
- B. Anna, M. Kleopas, S. Constantine, F. Anestis, and B. Maria, Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems, Environ. Earth Sci., 73, 5435-5444 (2015). https://doi.org/10.1007/s12665-014-3798-0
- Sunil, B. M., Faziludeen, and Saifiya, Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil, Adv. Environ. Res., 4, 197-210 (2015). https://doi.org/10.12989/aer.2015.4.3.197
- L. Mahouachi, T. Rastogi, W.-U. Palm, I. Ghorbel-Abid, D. Ben Hassen Chehimi, and K. Kummerer, Natural clay as a sorbent to remove pharmaceutical micropollutants from wastewater, Chemosphere, 258, 127213 (2020). https://doi.org/10.1016/j.chemosphere.2020.127213
- T. M. Berhane, J. Levy, M. P. S. Krekeler, N. D. Danielson, and A. Stalcup, Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium, J. Hazard. Mater., 282, 183-193 (2015). https://doi.org/10.1016/j.jhazmat.2014.09.025
- Q. Wu, Z. Li, and H. Hong, Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite, Appl. Clay Sci., 74, 66-73 (2013). https://doi.org/10.1016/j.clay.2012.09.026
- A. A. Taha, M. A. Shreadah, H. F. Heiba, and A. M. Ahmed, Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: characterization, isotherm, kinetics, thermodynamics and application study: Adsorption of heavy metals under acidic conditions, Asia-Pac. J. Chem. Eng., 12, 292-306 (2017). https://doi.org/10.1002/apj.2072
- M. Barkat, S. Chegrouche, A. Mellah, B. Bensmain, D. Nibou, and M. Boufatit, application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions, J. Surf. Eng. Mater. Adv. Technol., 04, 210-226 (2014).
- S. Sen Gupta and K. G. Bhattacharyya, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, J. Environ. Manage., 87, (2008) 46-58. https://doi.org/10.1016/j.jenvman.2007.01.048
- O. Etci, N. Bektas and M. S. Oncel, Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite, Environ. Earth Sci., 61, 231-240 (2010). https://doi.org/10.1007/s12665-009-0338-4
- C.-J. Wang, Z. Li, and W.-T. Jiang, Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals, Appl. Clay Sci., 53, 723-728 (2011). https://doi.org/10.1016/j.clay.2011.06.014
- P.-H. Chang, Z. Li, W.-T. Jiang, C.-Y. Kuo, and J.-S. Jean, Adsorption of tetracycline on montmorillonite: influence of solution pH, temperature, and ionic strength, Desalin. Water Treat., 1-13, 1380-1392 (2014).
- P.-H. Chang, Z. Li, J.-S. Jean, W.-T. Jiang, C.-J. Wang, and K.-H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci., 67-68, 158-163 (2012). https://doi.org/10.1016/j.clay.2011.11.004
- S. K. Behera, S.-Y. Oh, and H.-S. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179, 684-691 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.056
- H. Mabrouki and D. E. Akretche, Diclofenac potassium removal from water by adsorption on natural and pillared clay, Desalin. Water Treat., 57, 6033-6043 (2016). https://doi.org/10.1080/19443994.2014.1002008
- M. Kaur and M. Datta, Diclofenac sodium adsorption onto montmorillonite: Adsorption equilibrium studies and drug release kinetics, Adsorpt. Sci. Technol., 32, 365-387 (2014). https://doi.org/10.1260/0263-6174.32.5.365
- E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics, Water Res., 43, 2419-2430 (2009). https://doi.org/10.1016/j.watres.2009.02.039
- H. Gallouze, D.-E. Akretche, C. Daniel, I. Coelhoso, and J. G. Crespo, Removal of synthetic estrogen from water by adsorption on modified bentonites, Environ. Eng. Sci., 38, 4-14 (2021). https://doi.org/10.1089/ees.2020.0048
- E. Bojemueller, A. Nennemann, and G. Lagaly, Enhanced pesticide adsorption by thermally modified bentonites, Appl. Clay Sci., 18, 277-284 (2001). https://doi.org/10.1016/S0169-1317(01)00027-8
- A. Gil, Y. El Mouzdahir, A. Elmchaouri, M. A. Vicente, and S. A. Korili, Equilibrium and thermodynamic investigation of methylene blue adsorption on thermal- and acid-activated clay minerals, Desalin. Water Treat., 51, 2881-2888 (2013). https://doi.org/10.1080/19443994.2012.748127
- R. Rusmin, B. Sarkar, B. Biswas, J. Churchman, Y. Liu, and R. Naidu, Structural, electrokinetic and surface properties of activated palygorskite for environmental application, Appl. Clay Sci., 134, 95-102 (2016). https://doi.org/10.1016/j.clay.2016.07.012
- J. A. Torres-Luna and J. G. Carriazo, Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay, Solid State Sci., 88, 29-35 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.12.006
- M. Toor, B. Jin, S. Dai, and V. Vimonses, Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater, J. Ind. Eng. Chem., 21, 653-661 (2015).. https://doi.org/10.1016/j.jiec.2014.03.033
- J. Nones, J. Nones, H. G. Riella, A. Poli, A. G. Trentin, and N. C. Kuhnen, Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death, Mater. Sci. Eng. C, 55, 530-537 (2015). https://doi.org/10.1016/j.msec.2015.05.069
- S. Aytas, M. Yurtlu, and R. Donat, Adsorption characteristic of U(VI) ion onto thermally activated bentonite, J. Hazard. Mater., 172, 667-674 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.049
- Q. Zuo, X. Gao, J. Yang, P. Zhang, G. Chen, Y. Li, K. Shi, and W. Wu, Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution, J. Taiwan Inst. Chem. Eng., 80, 754-760 (2017). https://doi.org/10.1016/j.jtice.2017.09.016
- L. Heller-Kallai, Chapter 7.2 Thermally Modified Clay Minerals, In: Dev. Clay Sci., Elsevier, 289-308 (2006).
- H. A. Talaat, N. M. El Defrawy, A. G. Abulnour, H. A. Hani, and A. Tawfik, Evaluation of heavy metals removal using some Egyptian clays, Int. Proc. Chem. Biol. Environ. Eng., 6, 37-42 (2011).
- E. Padilla-Ortega, N. Medellin-Castillo, and A. Robledo-Cabrera, Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II), J. Environ. Chem. Eng., 8, 103850 (2020). https://doi.org/10.1016/j.jece.2020.103850
- Z. Orolinova, A. Mockovciakova, S. Dolinska, and J. Briancin, EFFECT OF THERMAL TREATMENT ON THE BENTONITE PROPERTIES, Arch. Tech. Sci., 4, 49-56 (2012). https://doi.org/10.5825/afts.2012.0407.049O
- C. Bertagnolli, S. J. Kleinubing, and M. G. C. da Silva, Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds, Appl. Clay Sci., 53, 73-79 (2011). https://doi.org/10.1016/j.clay.2011.05.002
- M. G. A. Vieira, A. F. A. Neto, M. L. Gimenes, and M. G. C. da Silva, Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, J. Hazard. Mater., 177, 362-371 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.040
- V. Masindi and M. M. Ramakokovhu, The performance of thermally activated and vibratory ball milled South African bentonite clay for the removal of chromium ions from aqueous solution, Mater. Today Proc., 38, 964-974 (2021). https://doi.org/10.1016/j.matpr.2020.05.490
- S. T. Akar, Y. Yetimoglu, and T. Gedikbey, Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification, Desalination, 244, 97-108 (2009). https://doi.org/10.1016/j.desal.2008.04.040
- R. Antonelli, G. R. P. Malpass, M. G. C. da Silva, and M. G. A. Vieira, Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng., 8, 104553 (2020). https://doi.org/10.1016/j.jece.2020.104553
- A. Maged, J. Iqbal, S. Kharbish, I. S. Ismael, and A. Bhatnagar, Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies, J. Hazard. Mater., 384, (2020) 121320. https://doi.org/10.1016/j.jhazmat.2019.121320
- E. Gonzalez-Pradas, M. Socias-Viciana, M. D. Urena-Amate, A. Cantos-Molina, and M. Villafranca-Sanchez, Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites, Water Res., 39, 1849-1857 (2005). https://doi.org/10.1016/j.watres.2005.03.001
- V. A. A. Espana, B. Sarkar, B. Biswas, R. Rusmin, and R. Naidu, Environmental applications of thermally modified and acid activated clay minerals: Current status of the art, Environ. Technol. Innov., 13, 383-397 (2019). https://doi.org/10.1016/j.eti.2016.11.005
- K. G. Akpomie, and F. A. Dawodu, Acid-modified montmorillonite for sorption of heavy metals from automobile effluent, Beni-Suef Univ. J. Basic Appl. Sci., 5, 1-12 (2016). https://doi.org/10.1016/j.bjbas.2016.01.003
- C. Volzone, Retention of pollutant gases: Comparison between clay minerals and their modified products, Appl. Clay Sci., 36, 191-196 (2007). https://doi.org/10.1016/j.clay.2006.06.013
- W. T. Tsai, K. J. Hsien, and J. M. Yang, Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution, J. Colloid Interface Sci., 275, 428-433 (2004). https://doi.org/10.1016/j.jcis.2004.02.093
- D. Tiwari, Lalhmunsiama, S. I. Choi, and S. M. Lee, Activated sericite: An efficient and effective natural clay material for attenuation of cesium from aquatic environment, Pedosphere, 24, 731-742 (2014). https://doi.org/10.1016/s1002-0160(14)60060-6
- R. Shawabkeh, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24, 111-120 (2003). https://doi.org/10.1016/S0169-1317(03)00154-6
- T. Vengris, R. Binkien, and A. Sveikauskait, Nickel, copper and zinc removal from waste water by a modified clay sorbent, Appl. Clay Sci., 18, 183-190 (2001). https://doi.org/10.1016/S0169-1317(00)00036-3
- P. Komadel and J. Madejova, Acid Activation of Clay Minerals, In: F. Bergaya, B.K.G. Theng, G. Lagaly, Developments in Clay Science, 263-287, Elsevier (2013).
- M. Eloussaief and M. Benzina, Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions, J. Hazard. Mater., 178, 753-757 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.004
- P. Pushpaletha, S. Rugmini and M. Lalithambika, Correlation between surface properties and catalytic activity of clay catalysts, Appl. Clay Sci., 30, 141-153 (2005). https://doi.org/10.1016/j.clay.2005.03.011
- J. U. K. Oubagaranadin, Z. V. P. Murthy, and V. P. Mallapur, Removal of Cu(II) and Zn(II) from industrial wastewater by acid-activated montmorillonite-illite type of clay, Comptes Rendus Chim., 13, 1359-1363 (2010). https://doi.org/10.1016/j.crci.2010.05.024
- H. Chen, Y. Zhao and A. Wang, Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite, J. Hazard. Mater., 149, 346-354 (2007). https://doi.org/10.1016/j.jhazmat.2007.03.085
- Y. Bayrak, Y. Yesiloglu and U. Gecgel, Adsorption behavior of Cr(VI) on activated hazelnut shell ash and activated bentonite, Microporous Mesoporous Mater., 91, 107-110 (2006). https://doi.org/10.1016/j.micromeso.2005.11.010
- S. Arfaoui, N. Frini-Srasra, and E. Srasra, Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222, 474-481 (2008). https://doi.org/10.1016/j.desal.2007.03.014
- Y. Deng, F. Wu, B. Liu, X. Hu, and C. Sun, Sorptive removal of β-blocker propranolol from aqueous solution by modified attapulgite: Effect factors and sorption mechanisms, Chem. Eng. J., 174, 571-578 (2011). https://doi.org/10.1016/j.cej.2011.09.057
- H. Zaghouane-Boudiaf and M. Boutahala, Kinetic analysis of 2,4,5-trichlorophenol adsorption onto acid-activated montmorillonite from aqueous solution, Int. J. Miner. Process., 100, 72-78 (2011). https://doi.org/10.1016/j.minpro.2011.04.011
- B. Sarkar, Y. Xi, M. Megharaj, G. S. R. Krishnamurti, M. Bowman, H. Rose, and R. Naidu, Bioreactive Organoclay: A New Technology for Environmental Remediation, Crit. Rev. Environ. Sci. Technol., 42, 435-488 (2012). https://doi.org/10.1080/10643389.2010.518524
- M. Addy, B. Losey, R. Mohseni, E. Zlotnikov, and A. Vasiliev, Adsorption of heavy metal ions on mesoporous silica-modified montmorillonite containing a grafted chelate ligand, Appl. Clay Sci., 59-60, 115-120 (2012). https://doi.org/10.1016/j.clay.2012.02.012
- R. Celis, C. Trigo, G. Facenda, M. D. C. Hermosin, and J. Cornejo, Selective Modification of Clay Minerals for the Adsorption of Herbicides Widely Used in Olive Groves, J. Agric. Food Chem., 55, 6650-6658 (2007). https://doi.org/10.1021/jf070709q
- H. He, L. Ma, J. Zhu, R.L. Frost, B. K. G. Theng, and F. Bergaya, Synthesis of organoclays: A critical review and some unresolved issues, Appl. Clay Sci., 100, 22-28 (2014). https://doi.org/10.1016/j.clay.2014.02.008
- L. Groisman, Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays, Appl. Clay Sci., 24, 159-166 (2004). https://doi.org/10.1016/j.clay.2003.02.001
- V. A. Oyanedel-Craver and J. A. Smith, Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites, J. Hazard. Mater., 137, 1102-1114 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.051
- P. LeBaron, Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci., 15, 11-29 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
- P. G. Slade and W. P. Gates, The swelling of HDTMA smectites as influenced by their preparation and layer charges, Appl. Clay Sci., 25, 93-101 (2004). https://doi.org/10.1016/j.clay.2003.07.007
- F. Bergaya and G. Lagaly, General introduction: clays, clay minerals, and clay science, Dev. Clay Sci., 1, 1-18 (2006). https://doi.org/10.1016/S1572-4352(05)01001-9
- G. Beall and M. Goss, Self-assembly of organic molecules on montmorillonite, Appl. Clay Sci., 27 179-186 (2004). https://doi.org/10.1016/j.clay.2004.06.006
- G. Gorrasi, M. Tortora, V. Vittoria, D. Kaempfer, and R. Mulhaupt, Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene, Polymer, 44, 3679-3685 (2003). https://doi.org/10.1016/S0032-3861(03)00284-2
- M. Kozak and L. Domka, Adsorption of the quaternary ammonium salts on montmorillonite, J. Phys. Chem. Solids, 65, 441-445 (2004). https://doi.org/10.1016/j.jpcs.2003.09.015
- J. Zhu, H. He, L. Zhu, X. Wen and F. Deng, Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR, J. Colloid Interface Sci., 286, 239-244 (2005). https://doi.org/10.1016/j.jcis.2004.12.048
- M. Ogawa, T. Handa, K. Kuroda and C. Kato, Formation of organoammonium-montmorillonites by solid-solid reactions, Chem. Lett., 19, 71-74 (1990). https://doi.org/10.1246/cl.1990.71
- S. Yoshimoto, F. Ohashi, and T. Kameyama, X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing, Solid State Commun., 136, 251-256 (2005). https://doi.org/10.1016/j.ssc.2005.08.017
- D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova, and J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interfaces, 9, 529-540 (2002). https://doi.org/10.1163/15685540260494100
- T. S. Anirudhan and M. Ramachandran, Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu(II), Zn(II), and Cd(II) adsorption from aqueous solutions and industry wastewaters, Ind. Eng. Chem. Res., 47, 6175-6184 (2008). https://doi.org/10.1021/ie070735d
- B. Cheknane, O. Bouras, M. Baudu, J.-P. Basly, and A. Cherguielaine, Granular inorgano-organo pillared clays (GIOCs): Preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions, Chem. Eng. J., 158, 528-534 (2010). https://doi.org/10.1016/j.cej.2010.01.043
- O. Bouras, J.-C. Bollinger, M. Baudu, and H. Khalaf, Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays, Appl. Clay Sci., 37, 240-250 (2007). https://doi.org/10.1016/j.clay.2007.01.009
- S.-Z. Li and P.-X. Wu, Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II), J. Hazard. Mater., 173, 62-70 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.047
- F. Zermane, O. Bouras, M. Baudu, and J.-P. Basly, Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay, J. Colloid Interface Sci., 350, 315-319 (2010). https://doi.org/10.1016/j.jcis.2010.06.040
- Thanhmingliana, C. Lalhriatpuia, D. Tiwari, and S.-M. Lee, Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies, Environ. Eng. Res., 21, 203-210 (2016). https://doi.org/10.4491/eer.2016.003
- D. Tiwari, W. Kim, M. Kim, S. K. Prasad, and S.-M. Lee, Organo-modified sericite in the remediation of phenol-contaminated waters, Desalin. Water Treat., 53, 446-451 (2015). https://doi.org/10.1080/19443994.2013.846562
- X. Jin, M. Jiang, J. Du, and Z. Chen, Removal of Cr(VI) from aqueous solution by surfactant-modified kaolinite, J. Ind. Eng. Chem., 20, 3025-3032 (2014). https://doi.org/10.1016/j.jiec.2013.11.038
- X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, and L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci., 97, 17-23 (2014). https://doi.org/10.1016/j.clay.2014.05.028
- J. Su, H.-G. Huang, X.-Y. Jin, X.-Q. Lu, and Z.-L. Chen, Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution, J. Hazard. Mater., 185, 63-70 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.122
- R. Mudzielwana, M.W. Gitari, and P. Ndungu, Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5, e02756 (2019). https://doi.org/10.1016/j.heliyon.2019.e02756
- S.M. Lee, Lalhmunsiama, Thanhmingliana, and D. Tiwari, Porous hybrid materials in the remediation of water contaminated with As(III) and As(V), Chem. Eng. J., 270, 496-507 (2015). https://doi.org/10.1016/j.cej.2015.02.053
- L. Zhu, and R. Zhu, Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water, Sep. Purif. Technol., 54, 71-76 (2007). https://doi.org/10.1016/j.seppur.2006.08.009
- Y. Chu, M. A. Khan, S. Zhu, M. Xia, W. Lei, F. Wang, and Y. Xu, Microstructural modification of organo-montmorillonite with Gemini surfactant containing four ammonium cations: molecular dynamics (MD) simulations and adsorption capacity for copper ions, J. Chem. Technol. Biotechnol., 94, 3585-3594 (2019). https://doi.org/10.1002/jctb.6162
- H. Hong, W.-T. Jiang, X. Zhang, L. Tie, and Z. Li, Adsorption of Cr(VI) on STAC-modified rectorite, Appl. Clay Sci., 42, 292-299 (2008). https://doi.org/10.1016/j.clay.2008.01.015
- I. Hamadneh, R. Abu-Zurayk, B. Abu-Irmaileh, A. Bozeya, and A. H. Al-Dujaili, Adsorption of Pb(II) on raw and organically modified Jordanian bentonite, Clay Miner., 50, 485-496 (2015). https://doi.org/10.1180/claymin.2015.050.4.05
- J. Hua, Synthesis and characterization of bentonite based inorgano-organo-composites and their performances for removing arsenic from water, Appl. Clay Sci., 114, 239-246 (2015). https://doi.org/10.1016/j.clay.2015.06.005
- S. Dultz, J.-H. An, and B. Riebe, Organic cation exchanged montmorillonite and vermiculite as adsorbents for Cr(VI): Effect of layer charge on adsorption properties, Appl. Clay Sci., 67-68, 125-133 (2012). https://doi.org/10.1016/j.clay.2012.05.004
- X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, and L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci., 97-98, 17-23 (2014). https://doi.org/10.1016/j.clay.2014.05.028
- K. Tohdee and L. Kaewsichan, Asadullah, Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, J. Environ. Chem. Eng., 6, 2821-2828 (2018). https://doi.org/10.1016/j.jece.2018.04.030
- X. Jin, S. Zha, S. Li, and Z. Chen, Simultaneous removal of mixed contaminants by organoclays - Amoxicillin and Cu(II) from aqueous solution, Appl. Clay Sci., 102, 196-201 (2014). https://doi.org/10.1016/j.clay.2014.09.040
- Q. Yang, M. Gao, Z. Luo, and S. Yang, Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain, Chem. Eng. J., 285, 27-38 (2016). https://doi.org/10.1016/j.cej.2015.09.114
- J. Wang, M. Gao, F. Ding, and T. Shen, Organo-vermiculites modified by heating and gemini pyridinium surfactants: Preparation, characterization and sulfamethoxazole adsorption, Colloids Surf. Physicochem. Eng. Asp., 546, 143-152 (2018). https://doi.org/10.1016/j.colsurfa.2018.03.014
- A. E. Burgos, T. A. Ribeiro-Santos, and R. M. Lago, Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 74, 663-671 (2016). https://doi.org/10.2166/wst.2016.207
- S. I. Rathnayake, Y. Xi, R. L. Frost, and G. A. Ayoko, Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A, J. Colloid Interface Sci., 470, (2016) 183-195. https://doi.org/10.1016/j.jcis.2016.02.034
- A. (Fern) Phuekphong, K. Imwiset, and M. Ogawa, Adsorption of Triclosan onto Organically Modified-Magadiite and Bentonite, J. Inorg. Organomet. Polym. Mater., 31, 1902-1911 (2021). https://doi.org/10.1007/s10904-021-01919-0
- H. He, Q. Tao, J. Zhu, P. Yuan, W. Shen, and S. Yang, Silylation of clay mineral surfaces, Appl. Clay Sci., 71, 15-20 (2013). https://doi.org/10.1016/j.clay.2012.09.028
- A. Di Gianni, E. Amerio, O. Monticelli, and R. Bongiovanni, Preparation of polymer/clay mineral nanocomposites via dispersion of silylated montmorillonite in a UV curable epoxy matrix, Appl. Clay Sci., 42, 116-124 (2008). https://doi.org/10.1016/j.clay.2007.12.011
- Negrete, J.-M. Letoffe, J.-L. Putaux, L. David, and E. Bourgeat-Lami, Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites, Langmuir, 20, 1564-1571 (2004). https://doi.org/10.1021/la0349267
- W. Shen, H. He, J. Zhu, P. Yuan, Y. Ma, and X. Liang, Preparation and characterization of 3-aminopropyltriethoxysilane grafted montmorillonite and acid-activated montmorillonite, Sci. Bull., 54, 265-271 (2009). https://doi.org/10.1007/s11434-008-0361-y
- F. Piscitelli, P. Posocco, R. Toth, M. Fermeglia, S. Pricl, G. Mensitieri, and M. Lavorgna, Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length, J. Colloid Interface Sci. 351(1), 108-115 (2010) https://doi.org/10.1016/j.jcis.2010.07.059
- S. B. Y. Abeywardena, S. Perera, K. M. Nalin de Silva, and N. P. Tissera, A facile method to modify bentonite nanoclay with silane, Int. Nano Lett., 7, 237-241 (2017). https://doi.org/10.1007/s40089-017-0214-2
- M. Monasterio, J. J. Gaitero, E. Erkizia, A. M. Guerrero Bustos, L. A. Miccio, J. S. Dolado, and S. Cerveny, Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C-S-H) gel, J. Colloid Interface Sci., 450, 109-118 (2015). https://doi.org/10.1016/j.jcis.2015.02.066
- A. Xue, S. Zhou, Y. Zhao, X. Lu, and P. Han, Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes, J. Hazard. Mater., 194, 7-14 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.018
- A. M. Shanmugharaj, K. Y. Rhee, and S. H. Ryu, Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials, J. Colloid Interface Sci., 298, 854-859 (2006). https://doi.org/10.1016/j.jcis.2005.12.049
- L. M. Daniel, R. L. Frost, and H. Y. Zhu, Edge-modification of laponite with dimethyl-octylmethoxysilane, J. Colloid Interface Sci., 321, 302-309 (2008). https://doi.org/10.1016/j.jcis.2008.01.032
- H. He, J. Duchet, J. Galy, and J.-F. Gerard, Grafting of swelling clay materials with 3-aminopropyltriethoxysilane, J. Colloid Interface Sci., 288, 171-176 (2005). https://doi.org/10.1016/j.jcis.2005.02.092
- W. Carvalho, C. Vignado, and J. Fontana, Ni(II) removal from aqueous effluents by silylated clays, J. Hazard. Mater., 153, 1240-1247 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.083
- T. Sahan, F. Erol, and S. Yilmaz, Mercury(II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization, Microchem. J., 138, 360-368 (2018). https://doi.org/10.1016/j.microc.2018.01.028
- X. Liang, Y. Xu, G. Sun, L. Wang, Y. Sun, Y. Sun, and X. Qin, Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium, Chem. Eng. J., 174, 436-444 (2011). https://doi.org/10.1016/j.cej.2011.08.060
- Lalhmunsiama, D. Tiwari, and S.-M. Lee, Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights, Chem. Eng. J., 283, 1414-1423 (2016). https://doi.org/10.1016/j.cej.2015.08.072
- R. Malsawmdawngzela, D. Tiwari, and Lalhmunsiama, Facile synthesis and implications of novel hydrophobic materials: Newer insights of pharmaceuticals removal, Int. J. Biochem. Biophy., 58(6), 520-531 (2021).
- R. Malsawmdawngzela, L. Siama, D. Tiwari, S.-M. Lee, and D.-J. Kim, Efficient and selective use of functionalized material in the decontamination of water: removal of emerging micro-pollutants from aqueous wastes, Environ. Technol. 1-15 (2021), https://doi.org/10.1080/09593330.2021.1994654.
- X. Liang, J. Han, Y. Xu, L. Wang, Y. Sun, and X. Tan, Sorption of Cd2+ on mercapto and amino functionalized palygorskite, Appl. Surf. Sci., 322, 194-201 (2014). https://doi.org/10.1016/j.apsusc.2014.10.092
- F. H. do Nascimento, D.M. de Souza Costa, and J. C. Masini, Evaluation of thiol-modified vermiculite for removal of Hg(II) from aqueous solutions, Appl. Clay Sci., 124-125, 227-235 (2016). https://doi.org/10.1016/j.clay.2016.02.017
- H. Cui, Y. Qian, Q. Li, Z. Wei, and J. Zhai, Fast removal of Hg(II) ions from aqueous solution by amine-modified attapulgite, Appl. Clay Sci., 72, 84-90 (2013). https://doi.org/10.1016/j.clay.2013.01.003
- V. Marjanovic, S. Lazarevic, I. Jankovic-Castvan, B. Potkonjak, D. Janackovic, and R. Petrovic, Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites, Chem. Eng. J., 166, 198-206 (2011). https://doi.org/10.1016/j.cej.2010.10.062
- S. Yilmaz, T. Sahan, and A. Karabakan, Response surface approach for optimization of Hg (II) adsorption by 3-mercaptopropyl trimethoxysilane-modified kaolin minerals from aqueous solution, Korean J. Chem. Eng., 34, 2225-2235 (2017). https://doi.org/10.1007/s11814-017-0116-z
- U. Ecer, S. Yilmaz, and T. Sahan, Highly efficient Cd(II) adsorption using mercapto-modified bentonite as a novel adsorbent: an experimental design application based on response surface methodology for optimization, Water Sci. Technol., 78, 1348-1360 (2018). https://doi.org/10.2166/wst.2018.400
- J. Han, X. Liang, Y. Xu, and Y. Xu, Removal of Cu2+ from aqueous solution by adsorption onto mercapto functionalized palygorskite, J. Ind. Eng. Chem., 23, 307-315 (2015).. https://doi.org/10.1016/j.jiec.2014.08.034
- T. S. Anirudhan, S. Jalajamony, and S. S. Sreekumari, Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites, Appl. Clay Sci., 65-66, 67-71 (2012). https://doi.org/10.1016/j.clay.2012.06.005
- T. Phothitontimongkol, N. Siebers, N. Sukpirom, and F. Unob, Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution, Appl. Clay Sci., 43, 343-349 (2009). https://doi.org/10.1016/j.clay.2008.09.016
- T. Undabeytia, F. Madrid, J. Vazquez, and J. I. Perez-Martinez, Grafted Sepiolites for the Removal of Pharmaceuticals in Water Treatment, Clays Clay Miner., 67, 173-182 (2019). https://doi.org/10.1007/s42860-019-00013-4
- Lalhmunsiama, R. R. Pawar, A. Chowdhury, Zirlianngura, and S. M. Lee, Removal of emerging micropollutants from water using hybrid material precursor to natural sericite clay, Int. J. Biochem. Biophy., 58 (2021).
- R. Malsawmdawngzela and D. Tiwari, 17α-Ethinylestradiol elimination using synthesized and dense nanocomposite materials: Mechanism and real matrix treatment, Korean J. Chem. Eng., 39, 646-654 (2022). https://doi.org/10.1007/s11814-021-0958-2
- Z. Dankova, A. Bekenyiova, I. Styriakova and E. Fedorova, Study of Cu(II) Adsorption by Siderite and Kaolin, Procedia Earth Planet. Sci., 15, 821-826 (2015). https://doi.org/10.1016/j.proeps.2015.08.131
- F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
- D. J. L. Guerra, I. Mello, R. Resende, and R. Silva, Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: Equilibrium, kinetic, pH, and thermodynamic effects, Water Resour. Ind., 4, 32-50 (2013). https://doi.org/10.1016/j.wri.2013.11.001
- Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, and D. R. Paul, Clay-Based Polymer Nanocomposites: Research and Commercial Development, J. Nanosci. Nanotechnol., 5, 1574-1592 (2005). https://doi.org/10.1166/jnn.2005.411
- A.S.K. Kumar, S. Kalidhasan, V. Rajesh, and N. Rajesh, Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater, Ind. Eng. Chem. Res., 51, 58-69 (2012). https://doi.org/10.1021/ie201349h
- Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E. K. Wujcik, and Z. Guo, Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions, Polymer, 128, 12-23 (2017). https://doi.org/10.1016/j.polymer.2017.09.009
- A. Soliemanzadeh and M. Fekri, The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative parameters and soil experiments, Microporous Mesoporous Mater., 239, 60-69 (2017). https://doi.org/10.1016/j.micromeso.2016.09.050
- K. G. Bhattacharyya, S. S. Gupta, Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution, Sep. Purif. Technol., 50, 388-397 (2006). https://doi.org/10.1016/j.seppur.2005.12.014
- V. N. Tirtom, A. Dincer, S. Becerik, T. Aydemir, and A. Celik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution, Chem. Eng. J., 197, 379-386 (2012). https://doi.org/10.1016/j.cej.2012.05.059
- Y.-J. Shi, X.-H. Wang, Z. Qi, M.-H. Diao, M.-M. Gao, S.-F. Xing, S.-G. Wang, and X.-C. Zhao, Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules, J. Hazard. Mater., 191, 103-109 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.048
- S. Mnasri-Ghnimi, and N. Frini-Srasra, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179, 105151 (2019). https://doi.org/10.1016/j.clay.2019.105151
- Q. Wang, X. Chang, D. Li, Z. Hu, R. Li, and Q. He, Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite, J. Hazard. Mater., 186, 1076-1081 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.107
- C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, and T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chem. Eng. J., 149, 319-324 (2009). https://doi.org/10.1016/j.cej.2008.11.025
- M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep., 28, 1-63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
- G. Beyer, Nanocomposites: a new class of flame retardants for polymers, Plast. Addit. Compd., 4, 22-28 (2002). https://doi.org/10.1016/S1464-391X(02)80151-9
- H. R. Fischer, L. H. Gielgens, and T. P. M. Koster, Nanocomposites from polymers and layered minerals, MRS Proc., 519, 117 (1998). https://doi.org/10.1557/PROC-519-117
- E. M. S. Azzam, Gh. Eshaq, A. M. Rabie, A. A. Bakr, A. A. Abd-Elaal, A. E. El Metwally, and S. M. Tawfik, Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution, Int. J. Biol. Macromol., 89, 507-517 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.004
- K. Z. Setshedi, M. Bhaumik, S. Songwane, M. S. Onyango, and A. Maity, Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, Chem. Eng. J., 222, 186-197 (2013). https://doi.org/10.1016/j.cej.2013.02.061
- B. K. Kizilduman, M. Alkan, M. Dogan, and Y. Turhan, Al-Pillared-Montmorillonite (AlPMt)/Poly(Methyl Methacrylate)(PMMA) Nanocomposites: The effects of solvent types and synthesis methods, Adv. Mater. Sci., 17, 5-23 (2017).
- R. Fu, Y. Yang, Z. Xu, X. Zhang, X. Guo, and D. Bi, The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI), Chemosphere, 138, 726-734 (2015). https://doi.org/10.1016/j.chemosphere.2015.07.051
- S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee, and M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism, Chem. Eng. J., 243, 14-23 (2014). https://doi.org/10.1016/j.cej.2013.12.049
- C.M. Futalan, C.-C. Kan, M.L. Dalida, K.-J. Hsien, C. Pascua, and M.-W. Wan, Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite, Carbohydr. Polym., 83, 528-536 (2011). https://doi.org/10.1016/j.carbpol.2010.08.013
- A. B. Dukic, K. R. Kumric, N. S. Vukelic, M. S. Dimitrijevic, Z. D. Bascarevic, S. V. Kurko, and L. Lj. Matovic, Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite-kaolinite/TiO2 composite, Appl. Clay Sci., 103, 20-27 (2015). https://doi.org/10.1016/j.clay.2014.10.021
- A. Ramesh, H. Hasegawa, T. Maki, and K. Ueda, Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite, Sep. Purif. Technol., 56, 90-100 (2007). https://doi.org/10.1016/j.seppur.2007.01.025
- H. A. Sani, M. B. Ahmad, M. Z. Hussein, N. A. Ibrahim, A. Musa, and T. A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions, Process Saf. Environ. Prot., 109, 97-105 (2017). https://doi.org/10.1016/j.psep.2017.03.024
- L. Chen, P. Wu, M. Chen, X. Lai, Z. Ahmed, N. Zhu, Z. Dang, Y. Bi, and T. Liu, Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead, Appl. Clay Sci., 159, 74-82 (2018). https://doi.org/10.1016/j.clay.2017.12.050
- A. C. S. Alcantara, M. Darder, P. Aranda, and E. Ruiz-Hitzky, Polysaccharide-fibrous clay bionanocomposites, Appl. Clay Sci., 96, 2-8 (2014). https://doi.org/10.1016/j.clay.2014.02.018
- A. Olad, M. Bastanian, and H. Bakht Khosh Hagh, Thermodynamic and kinetic studies of removal process of hexavalent chromium ions from water by using bio-conducting starch-montmorillonite/polyaniline nanocomposite, J. Inorg. Organomet. Polym. Mater., 29, 1916-1926 (2019). https://doi.org/10.1007/s10904-019-01152-w
- S. Piri, Z. A. Zanjani, F. Piri, A. Zamani, M. Yaftian, and M. Davari, Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study, J. Environ. Health Sci. Eng., 14, 20 (2016). https://doi.org/10.1186/s40201-016-0261-z
- X. Wang, L. Yang, J. Zhang, C. Wang, and Q. Li, Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions, Chem. Eng. J., 251, 404-412 (2014). https://doi.org/10.1016/j.cej.2014.04.089
- T. H. Vu, T. M. V. Ngo, T. T. A. Duong, T. H. L. Nguyen, X. T. Mai, T. H. N. Pham, T. P. Le, and T. H. Tran, Removal of tetracycline from aqueous solution using nanocomposite based on polyanion-modified laterite material, J. Anal. Methods Chem., 2020, 1-9 (2020).
- M. Chauhan, V. K. Saini, and S. Suthar, Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water, J. Hazard. Mater., 399, 122832 (2020). https://doi.org/10.1016/j.jhazmat.2020.122832
- I. A. Shabtai and Y. G. Mishael, Polycyclodextrin-clay composites: regenerable dual-site sorbents for bisphenol a removal from treated wastewater, ACS Appl. Mater. Interfaces., 10, 27088-27097 (2018). https://doi.org/10.1021/acsami.8b09715
- X. Jin, M. Zheng, B. Sarkar, R. Naidu, and Z. Chen, Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2,4-dichlorophenol from aqueous solution, Appl. Clay Sci., 134, 89-94 (2016). https://doi.org/10.1016/j.clay.2016.09.036
- A. Ely, M. Baudu, J.-P. Basly, and M. O. S. O. Kankou, Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules, J. Hazard. Mater., 171, 405-409 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.015
- Y. Hu, C. Pan, X. Zheng, S. Liu, F. Hu, L. Xu, G. Xu, and X. Peng, Removal of ciprofloxacin with aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs): kinetics, isotherms, and BBD model, Water, 12, 905 (2020). https://doi.org/10.3390/w12030905
- T. M. Salem Attia, X. L. Hu, and D. Q. Yin, Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies, Chemosphere, 93, 2076-2085 (2013). https://doi.org/10.1016/j.chemosphere.2013.07.046