DOI QR코드

DOI QR Code

Influence of Urea Precursor on the Electrochemical Properties of Ni-Co-based Metal Organic Framework Electrodes for Supercapacitors

  • Jung, Ye Seul (School of Chemical Engineering, Pusan National University) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (School of Chemical Engineering, Pusan National University)
  • 투고 : 2022.07.21
  • 심사 : 2022.08.27
  • 발행 : 2022.10.10

초록

A NiCo-metal organic framework (MOF) electrode, prepared using urea as a surfactant, was synthesized using a one-pot hydrothermal method. The addition of urea to the NiCo-MOF creates interstitial voids and an ultra-thin nanostructure in the NiCo-MOF, which improves its charge transfer performance. We obtained the optimal metal to surfactant ratio to achieve the best specific capacitance. The NiCo-MOF was employed as the working electrode material in a three-electrode system. Field emission scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were employed to characterize the microstructures and morphologies of the composites. Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy curves were employed to quantify the electrochemical properties of the electrodes in a 6 M KOH electrolyte.

키워드

과제정보

This work was supported by a 2-Year Research Grant of Pusan National University.

참고문헌

  1. J. B, Goodenough, Electrochemical energy storage in a sustainable modern society, Energy Environ. Sci., 7, 14-18 (2014). https://doi.org/10.1039/C3EE42613K
  2. M. Shakeel, B. Li, M. Arif, G. Yasin, W. Rehman, A. U. Khan, S. Khan, A. Khan, and J. Ali, Controlled Synthesis of highly proficient and durable hollow hierarchical heterostructured (Ag-AgBr/HHST): A UV and Visible light active photocatalyst in degradation of organic pollutants, Appl. Catal. B, 227, 433-445 (2018). https://doi.org/10.1016/j.apcatb.2018.01.037
  3. M. Arif, G. Yasin, M. Shakeel, X. Fang, R. Gao, S. Ji, and D. Yan, Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting, Chem. Asian J., 13, 1045-1052 (2018). https://doi.org/10.1002/asia.201800016
  4. D. P. Dubal, O. Ayyad, V. Ruiz, and P. Gomez-Romero, Hybrid energy storage: The merging of battery and supercapacitor chemistries, Chem. Soc. Rev., 44, 1777-1790 (2015). https://doi.org/10.1039/C4CS00266K
  5. B. Kang and G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 458, 190-193 (2009). https://doi.org/10.1038/nature07853
  6. G. Zhou, Graphene-pure sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries, Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium-Sulfur Batteries, Springer, Singapore, 75-94 (2017).
  7. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H. J. J. Fan, Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci., 3, 1500286 (2016). https://doi.org/10.1002/advs.201500286
  8. D. P. Dubal, N. R. Chodankar and S. Qiao, Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor, Small, 15, 1804104 (2019). https://doi.org/10.1002/smll.201804104
  9. F.-S. Ke, Y.-S. Wu and H. Deng, Metal-organic frameworks for lithium ion batteries and supercapacitors, J. Solid State Chem., 223, 109-121 (2015). https://doi.org/10.1016/j.jssc.2014.07.008
  10. X. Zhang, F. Yang, H. Chen, K. Wang, J. Chen, Y. Wang and S. Song, In Situ Growth of 2D Ultrathin NiCo2O4 Nanosheet Arrays on Ni Foam for High Performance and Flexible Solid-State Supercapacitors, Small, 16, 2004188 (2020). https://doi.org/10.1002/smll.202004188
  11. S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dinca, A. A. Kornyshev and G. Feng, Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes, Nat. Mater., 19, 552-558 (2020). https://doi.org/10.1038/s41563-019-0598-7
  12. W. Wang, X. Xu, W. Zhou and Z. Shao, Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting, Adv. Sci., 4, 1600371 (2017). https://doi.org/10.1002/advs.201600371
  13. P. Silva, S. M. F. Vilela, J. P. Tome, and F. A. Almeida Paz, Multifunctional metal-organic frameworks: From academia to industrial applications, Chem. Soc. Rev., 44, 6774-6803 (2015). https://doi.org/10.1039/C5CS00307E
  14. L. Shen, Q. Che, H. Li, and X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage, Adv. Funct. Mater., 24, 2630-2637 (2014). https://doi.org/10.1002/adfm.201303138
  15. J. Qi, Y. Yan, Y. Cai, J. Cao, and J. Feng, Nanoarchitectured Design of Vertical-Standing Arrays for Supercapacitors: Progress, Challenges, and Perspectives, Adv. Funct. Mater., 31, 2006030 (2021). https://doi.org/10.1002/adfm.202006030
  16. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, and L. Liu, Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors, J. Power Sources, 246, 747-753 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.035
  17. C. Wang, J. Xu, M. F. Yuen, J. Zhang, Y. Li, X. Chen, and W. Zhang, Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors, Adv. Funct. Mater., 24, 6372-6380 (2014). https://doi.org/10.1002/adfm.201401216
  18. X. Gong, J. Cheng, F. Liu, L. Zhang, and X. Zhang, Nickel-cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, J. Power Sources, 267, 610-616 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.120
  19. R. Waghmode, N. Maile, D. Lee, and A. P. Torane, Chemical bath synthesis of NiCo2O4 nanoflowers with nanorods like thin film for flexible supercapacitor application-effect of urea concentration on structural conversion, Electrochim. Acta, 350, 136413 (2020). https://doi.org/10.1016/j.electacta.2020.136413
  20. T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, and C. C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Adv. Mater., 22, 347-351 (2010). https://doi.org/10.1002/adma.200902175
  21. S. G. Kandalkar, H.-M. Lee, S. H. Seo, K. Lee, and C.-K. Kim, Cobalt-nickel composite films synthesized by chemical bath deposition method as an electrode material for supercapacitors, J. Mater. Sci., 46, 2977-2981 (2011). https://doi.org/10.1007/s10853-010-5174-0
  22. C. Qu, L. Zhang, W. Meng, Z. Liang, B. Zhu, D. Dang, S. Dai, B. Zhao, H. Tabassum, S. Gao, H. Zhang, W. Guo, R. Zhao, X. H, M. Liu, and R. Zou, MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors, J. Mater. Chem. A, 6, 4003-4012 (2018). https://doi.org/10.1039/C7TA11100B
  23. W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang, and J. Liu, MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors, Chem. Eng. J., 371, 461-469 (2019). https://doi.org/10.1016/j.cej.2019.04.070
  24. P. Li, F.-F. Cheng, W.-W. Xiong, and Q. Zhang, New synthetic strategies to prepare metal-organic frameworks, Inorg. Chem. Front., 5, 2693-2708 (2018). https://doi.org/10.1039/c8qi00543e
  25. J. Zhao, X. Liu, Y. Wu, D.-S. Li, and Q. Zhang, Surfactants as promising media in the field of metal-organic frameworks, Coord. Chem. Rev., 391, 30-43 (2019). https://doi.org/10.1016/j.ccr.2019.04.002
  26. Y. Tang, Y. Liu, S. Yu, W. Guo, S. Mu, H. Wang, Y. Zhao, L. Hou, Y. Fan, and F. Gao, Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor, Electrochim. Acta, 161, 279-289 (2015). https://doi.org/10.1016/j.electacta.2015.02.095
  27. J. Yang, Z. Ma, W. Gao, and M. Wei, Layered structural co-based MOF with conductive network frames as a new supercapacitor electrode, Chem. Eur. J., 23, 631-636 (2017). https://doi.org/10.1002/chem.201604071
  28. Z.-L. Huang, M. Drillon, N. Masciocchi, A. Sironi, J.-T. Zhao, P. Rabu, and P. Panissod, Ab-initio XRPD crystal structure and giant hysteretic effect (H c= 5.9 T) of a new hybrid terephthalate-based cobalt (II) magnet, Chem. Mater., 12, 2805-2812 (2000). https://doi.org/10.1021/cm000386c
  29. Y. Liu, Y. He, E. Vargun, T. Plachy, P. Saha, and Q. Cheng, 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage, Nanomaterials, 10, 695 (2020). https://doi.org/10.3390/nano10040695
  30. B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y. J. Xu, and Z. Lin, Nickel metal-organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity, Angew. Chem. Int. Ed., 57, 16811-16815 (2018). https://doi.org/10.1002/anie.201811545
  31. C. S. Lee, J. Moon, J. T. Park, and J. H. Kim, Engineering, Highly interconnected nanorods and nanosheets based on a hierarchically layered metal-organic framework for a flexible, high-performance energy storage device, ACS Sustain. Chem. Eng., 8, 3773-3785 (2020). https://doi.org/10.1021/acssuschemeng.9b06999
  32. C. S. Lee, J. M. Lim, J. T. Park, and J. H. Kim, Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@ NiS2@ C core-shell for high performance energy storage device, Chem. Eng. J., 406, 126810 (2021). https://doi.org/10.1016/j.cej.2020.126810
  33. J. Xiao and S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2 O4 spinel for pseudocapacitors, RSC Adv., 1, 588-595 (2011). https://doi.org/10.1039/c1ra00342a
  34. H. C. Chen, S. Jiang, B. Xu, C. Huang, Y. Hu, Y. Qin, M. He, and H. J. Cao, Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors, J. Mater. Chem. A, 7, 6241-6249 (2019). https://doi.org/10.1039/c8ta11189h
  35. X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, and J. Lian, Morphology controlled high performance supercapacitor behaviour of the Ni-Co binary hydroxide system, J. Power Sources, 238, 150-156 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.069
  36. A. Eftekhari, The mechanism of ultrafast supercapacitors, J. Mater. Chem. A 6, 2866-2876 (2018). https://doi.org/10.1039/C7TA10013B
  37. Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu, Y. Bao, L. Fan, W. Kang, F. Dai, R. Wang, L. Wang, S. Hu, D. Sun, and H-C. Zhou, Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors, ACS Nano, 13, 7024-7030 (2019). https://doi.org/10.1021/acsnano.9b02106
  38. R. B. Waghmode, H. S. Jadhav, K. G. Kanade, and A. P. Torane, Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors, Mater. Sci. Energy Technol., 2, 556-564 (2019).
  39. C. Zhang, T. Kuila, N. H. Kim, S. H. Lee, and J. H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes, Carbon, 89, 328-339 (2015). https://doi.org/10.1016/j.carbon.2015.03.051