Acknowledgement
This research was supported by Kyungpook National University Development Project Research Fund, 2018.
References
- Kobayashi N, Nakagawa A, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, et al. 1998. Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J. Investig. Dermatol. 110: 806-810. https://doi.org/10.1046/j.1523-1747.1998.00178.x
- Briganti S, Camera E, Picardo M. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16: 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
- Wenczl E, Van der Schans GP, Roza L, Kolb RM, Timmerman AJ, Smit NP, et al. 1998. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J. Investig. Dermatol. 111: 678-682. https://doi.org/10.1046/j.1523-1747.1998.00357.x
- Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, et al. 1994. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13: 5818-5825. https://doi.org/10.1002/j.1460-2075.1994.tb06925.x
- Ando H, Funasaka Y, Oka M, Ohashi A, Furumura M, Matsunaga J, et al. 1999. Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J. Lipid Res. 40: 1312-1316. https://doi.org/10.1016/S0022-2275(20)33493-3
- Solano F, Briganti S, Picardo M, Ghanem G. 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19: 550-571. https://doi.org/10.1111/j.1600-0749.2006.00334.x
- Yamaguchi Y, Hearing VJ. 2009. Physiological factors that regulate skin pigmentation. Biofactors 35: 193-199. https://doi.org/10.1002/biof.29
- Goding CR. 2000. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14: 1712-1728. https://doi.org/10.1101/gad.14.14.1712
- Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, et al. 2001. Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J. Investig. Dermatol. Symp. Proc. 6: 99-104. https://doi.org/10.1046/j.0022-202x.2001.00010.x
- Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, et al. 2002. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J. Biol. Chem. 277: 33690-33697. https://doi.org/10.1074/jbc.M202939200
- Busca R, Bertolotto C, Ortonne JP, Ballotti R. 1996. Inhibition of the phosphatidylinositol 3-kinase/p70S6-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem. 271: 31824-31830. https://doi.org/10.1074/jbc.271.50.31824
- Oka M, Nagai H, Ando H, Fukunaga M, Matsumura M, Araki K, et al. 2000. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J. Investig. Dermatol. 115: 699-703. https://doi.org/10.1046/j.1523-1747.2000.00095.x
- Shibata S. 2000. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku zasshi 120: 849-862. https://doi.org/10.1248/yakushi1947.120.10_849
- Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D. 2005. A history of the therapeutic use of liquorice in Europe. J. Ethnopharmacol. 99: 317-324. https://doi.org/10.1016/j.jep.2005.04.015
- Zhu WY, Gao J. 2008. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Invest. Dermatol. Symp. Proc. 13: 20-24. https://doi.org/10.1038/jidsymp.2008.8
- Kim HJ, Seo SH, Lee BG, Lee YS. 2005. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med. 71: 785-787. https://doi.org/10.1055/s-2005-871232
- Fu B, Li H, Wang X, Lee FS, Cui S. 2005. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food Chem. 53: 7408-7414. https://doi.org/10.1021/jf051258h
- Yokota T, Nishio H, Kubota Y, Mizoguchi M. 1998. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 11: 355-361. https://doi.org/10.1111/j.1600-0749.1998.tb00494.x
- Seo JY, Lee YS, Kim HJ, Lim SS, Lim JS, Lee IA, et al. 2010. Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes. J. Agric. Food Chem. 58: 1603-1608. https://doi.org/10.1021/jf9036062
- Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Kuroda M, et al. 2003. A licorice ethanolic extract with peroxisome proliferator-activated receptor-gamma ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. J. Nutr. 133: 3369-3377. https://doi.org/10.1093/jn/133.11.3369
- Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, et al. 2003. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg. Med. Chem. Lett. 13: 4267-4272. https://doi.org/10.1016/j.bmcl.2003.09.052
- Li J, Lim SS, Lee ES, Gong JH, Shin D, Kang IJ, et al. 2011. Isoangustone A suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp. Biol. Med. 236: 435-444. https://doi.org/10.1258/ebm.2010.010325
- Seon MR, Lim SS, Choi HJ, Park SY, Cho HJ, Kim JK, et al. 2010. Isoangustone A present in hexane/ethanol extract of Glycyrrhiza uralensis induces apoptosis in DU145 human prostate cancer cells via the activation of DR4 and intrinsic apoptosis pathway. Mol. Nutr. Food Res. 54: 1329-1339. https://doi.org/10.1002/mnfr.200900260
- Park S, Seok JK, Kwak JY, Choi YH, Hong SS, Suh HJ, et al. 2016. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid. Arch. Dermatol. Res. 308: 325-334. https://doi.org/10.1007/s00403-016-1644-9
- An SM, Lee SI, Choi SW, Moon SW, Boo YC. 2008. p-coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by alpha-melanocyte stimulating hormone. Br. J. Dermatol. 159: 292-299. https://doi.org/10.1111/j.1365-2133.2008.08653.x
- Goding CR, Fisher DE. 1997. Regulation of melanocyte differentiation and growth. Cell Growth Differ. 8: 935-940.
- Sato S, Roberts K, Gambino G, Cook A, Kouzarides T, Goding CR. 1997. CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14: 3083-3092. https://doi.org/10.1038/sj.onc.1201298
- Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. 1997. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272: 503-509. https://doi.org/10.1074/jbc.272.1.503
- Steingrimsson E, Copeland NG, Jenkins NA. 2004. Melanocytes and the microphthalmia transcription factor network. Ann. Rev. Genet. 38: 365-411. https://doi.org/10.1146/annurev.genet.38.072902.092717
- Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, Ballotti R. 1995. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem. 270: 24315-24320. https://doi.org/10.1074/jbc.270.41.24315
- Bertolotto C, Bille K, Ortonne JP, Ballotti R. 1998. In B16 melanoma cells, the inhibition of melanogenesis by TPA results from PKC activation and diminution of microphthalmia binding to the M-box of the tyrosinase promoter. Oncogene 16: 1665-1670. https://doi.org/10.1038/sj.onc.1201685
- Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, et al. 2000. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14: 301-312. https://doi.org/10.1101/gad.14.3.301
- Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, et al. 2000. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255: 135-143. https://doi.org/10.1006/excr.2000.4803