DOI QR코드

DOI QR Code

Dehydroglyasperin D Suppresses Melanin Synthesis through MITF Degradation in Melanocytes

  • Baek, Eun Ji (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Ha, Yu-Bin (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Kim, Ji Hye (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Lee, Ki Won (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lim, Soon Sung (Department of Food Science and Nutrition, Hallym University) ;
  • Kang, Nam Joo (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2022.07.19
  • Accepted : 2022.07.29
  • Published : 2022.08.28

Abstract

Licorice (Glycyrrhiza) has been used as preventive and therapeutic material for hyperpigmentation disorders. Previously, we isolated noble compounds including dehydroglyasperin C (DGC), dehydroglyasperin D (DGD) and isoangustone A (IAA) from licorice hexane/ethanol extracts. However, their anti-melanogenic effects and underlying molecular mechanisms are unknown. The present study compared effects of DGC, DGD and IAA on pigmentation in melan-a melanocytes and human epidermal melanocytes (HEMn). DGD exerted the most excellent anti-melanogenic effect, followed by DGC and IAA at non-cytotoxic concentrations. In addition, DGD significantly inhibited tyrosinase activity in vitro cell-free system and cell system. Western blot result showed that DGD decreased expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) in melan-a cells and HEMn cells. DGD induced phosphorylation of MITF, ERK and Akt signal pathway promoting MITF degradation system. However, DGD did not influence p38 and cAMP-dependent protein kinase (PKA)/CREB signal pathway in melan-a cells. These result indicated that DGD inhibited melanogenesis not only direct regulation of tyrosinase but also modulating intracellular signaling related with MITF level. Collectively, these results suggested a protective role for DGD against melanogenesis.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2018.

References

  1. Kobayashi N, Nakagawa A, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, et al. 1998. Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J. Investig. Dermatol. 110: 806-810. https://doi.org/10.1046/j.1523-1747.1998.00178.x
  2. Briganti S, Camera E, Picardo M. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16: 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  3. Wenczl E, Van der Schans GP, Roza L, Kolb RM, Timmerman AJ, Smit NP, et al. 1998. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J. Investig. Dermatol. 111: 678-682. https://doi.org/10.1046/j.1523-1747.1998.00357.x
  4. Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, et al. 1994. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13: 5818-5825. https://doi.org/10.1002/j.1460-2075.1994.tb06925.x
  5. Ando H, Funasaka Y, Oka M, Ohashi A, Furumura M, Matsunaga J, et al. 1999. Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J. Lipid Res. 40: 1312-1316. https://doi.org/10.1016/S0022-2275(20)33493-3
  6. Solano F, Briganti S, Picardo M, Ghanem G. 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19: 550-571. https://doi.org/10.1111/j.1600-0749.2006.00334.x
  7. Yamaguchi Y, Hearing VJ. 2009. Physiological factors that regulate skin pigmentation. Biofactors 35: 193-199. https://doi.org/10.1002/biof.29
  8. Goding CR. 2000. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14: 1712-1728. https://doi.org/10.1101/gad.14.14.1712
  9. Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, et al. 2001. Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J. Investig. Dermatol. Symp. Proc. 6: 99-104. https://doi.org/10.1046/j.0022-202x.2001.00010.x
  10. Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, et al. 2002. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J. Biol. Chem. 277: 33690-33697. https://doi.org/10.1074/jbc.M202939200
  11. Busca R, Bertolotto C, Ortonne JP, Ballotti R. 1996. Inhibition of the phosphatidylinositol 3-kinase/p70S6-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem. 271: 31824-31830. https://doi.org/10.1074/jbc.271.50.31824
  12. Oka M, Nagai H, Ando H, Fukunaga M, Matsumura M, Araki K, et al. 2000. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J. Investig. Dermatol. 115: 699-703. https://doi.org/10.1046/j.1523-1747.2000.00095.x
  13. Shibata S. 2000. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku zasshi 120: 849-862. https://doi.org/10.1248/yakushi1947.120.10_849
  14. Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D. 2005. A history of the therapeutic use of liquorice in Europe. J. Ethnopharmacol. 99: 317-324. https://doi.org/10.1016/j.jep.2005.04.015
  15. Zhu WY, Gao J. 2008. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Invest. Dermatol. Symp. Proc. 13: 20-24. https://doi.org/10.1038/jidsymp.2008.8
  16. Kim HJ, Seo SH, Lee BG, Lee YS. 2005. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med. 71: 785-787. https://doi.org/10.1055/s-2005-871232
  17. Fu B, Li H, Wang X, Lee FS, Cui S. 2005. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food Chem. 53: 7408-7414. https://doi.org/10.1021/jf051258h
  18. Yokota T, Nishio H, Kubota Y, Mizoguchi M. 1998. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 11: 355-361. https://doi.org/10.1111/j.1600-0749.1998.tb00494.x
  19. Seo JY, Lee YS, Kim HJ, Lim SS, Lim JS, Lee IA, et al. 2010. Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes. J. Agric. Food Chem. 58: 1603-1608. https://doi.org/10.1021/jf9036062
  20. Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Kuroda M, et al. 2003. A licorice ethanolic extract with peroxisome proliferator-activated receptor-gamma ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. J. Nutr. 133: 3369-3377. https://doi.org/10.1093/jn/133.11.3369
  21. Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, et al. 2003. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg. Med. Chem. Lett. 13: 4267-4272. https://doi.org/10.1016/j.bmcl.2003.09.052
  22. Li J, Lim SS, Lee ES, Gong JH, Shin D, Kang IJ, et al. 2011. Isoangustone A suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp. Biol. Med. 236: 435-444. https://doi.org/10.1258/ebm.2010.010325
  23. Seon MR, Lim SS, Choi HJ, Park SY, Cho HJ, Kim JK, et al. 2010. Isoangustone A present in hexane/ethanol extract of Glycyrrhiza uralensis induces apoptosis in DU145 human prostate cancer cells via the activation of DR4 and intrinsic apoptosis pathway. Mol. Nutr. Food Res. 54: 1329-1339. https://doi.org/10.1002/mnfr.200900260
  24. Park S, Seok JK, Kwak JY, Choi YH, Hong SS, Suh HJ, et al. 2016. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid. Arch. Dermatol. Res. 308: 325-334. https://doi.org/10.1007/s00403-016-1644-9
  25. An SM, Lee SI, Choi SW, Moon SW, Boo YC. 2008. p-coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by alpha-melanocyte stimulating hormone. Br. J. Dermatol. 159: 292-299. https://doi.org/10.1111/j.1365-2133.2008.08653.x
  26. Goding CR, Fisher DE. 1997. Regulation of melanocyte differentiation and growth. Cell Growth Differ. 8: 935-940.
  27. Sato S, Roberts K, Gambino G, Cook A, Kouzarides T, Goding CR. 1997. CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14: 3083-3092. https://doi.org/10.1038/sj.onc.1201298
  28. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. 1997. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272: 503-509. https://doi.org/10.1074/jbc.272.1.503
  29. Steingrimsson E, Copeland NG, Jenkins NA. 2004. Melanocytes and the microphthalmia transcription factor network. Ann. Rev. Genet. 38: 365-411. https://doi.org/10.1146/annurev.genet.38.072902.092717
  30. Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, Ballotti R. 1995. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem. 270: 24315-24320. https://doi.org/10.1074/jbc.270.41.24315
  31. Bertolotto C, Bille K, Ortonne JP, Ballotti R. 1998. In B16 melanoma cells, the inhibition of melanogenesis by TPA results from PKC activation and diminution of microphthalmia binding to the M-box of the tyrosinase promoter. Oncogene 16: 1665-1670. https://doi.org/10.1038/sj.onc.1201685
  32. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, et al. 2000. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14: 301-312. https://doi.org/10.1101/gad.14.3.301
  33. Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, et al. 2000. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255: 135-143. https://doi.org/10.1006/excr.2000.4803