DOI QR코드

DOI QR Code

The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments

  • Son, Young Min (Department of Systems Biotechnology, Chung-Ang University) ;
  • Kim, Jihwan (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2022.08.03
  • Accepted : 2022.08.16
  • Published : 2022.09.28

Abstract

During the last decades, research and therapeutic methods in cancer treatment have been evolving. As the results, nowadays, cancer patients are receiving several types of treatments, ranging from chemotherapy and radiation therapy to surgery and immunotherapy. In fact, most cancer patients take a combination of current anti-cancer therapies to improve the efficacy of treatment. However, current strategies still cause some side effects to patients, such as pain and depression. Therefore, there is the need to discover better ways to eradicate cancer whilst minimizing side effects. Recently, immunotherapy, particularly immune checkpoint blockade, is rising as an effective anti-cancer treatment. Unlike chemotherapy or radiation therapy, immunotherapy has few side effects and a higher tumor cell removal efficacy depend on cellular immunological mechanisms. Moreover, recent studies suggest that tissue immune responses are regulated by their microbiome composition. Each tissue has their specific microenvironment, which makes their microbiome composition different, particularly in the context of different types of cancer, such as breast, colorectal, kidney, lung, and skin. Herein, we review the current understanding of the relationship of immune responses and tissue microbiome in cancer in both animal and human studies. Moreover, we discuss the cancer-microbiome-immune axis in the context of cancer development and treatment. Finally, we speculate on strategies to control tissue microbiome alterations that may synergistically affect the immune system and impact cancer treatment outcomes.

Keywords

Acknowledgement

This research was supported by the "Chung-Ang University Research Grants in 2022" and by the "National Research Foundation of Korea (NRF)" grant funded by the Korea government (MSIT) (No. 2022R1F1A107323411). All figures were created with BioRender.

References

  1. Viale PH. 2020. The American Cancer Society's Facts & Figures: 2020 Edition. J. Adv. Pract. Oncol. 11: 135-136.
  2. Siegel RL, Miller KD, Jemal A. 2019. Cancer statistics, 2019. CA Cancer J. Clin. 69: 7-34. https://doi.org/10.3322/caac.21551
  3. Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, et al. 2018. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 68: 31-54. https://doi.org/10.3322/caac.21440
  4. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. 2009. A review of human carcinogens--Part B: biological agents. Lancet Oncol. 10: 321-322. https://doi.org/10.1016/S1470-2045(09)70096-8
  5. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. 2015. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35 Suppl: S185-S198. https://doi.org/10.1016/j.semcancer.2015.03.004
  6. Togashi Y, Shitara K, Nishikawa H. 2019. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16: 356-371. https://doi.org/10.1038/s41571-019-0175-7
  7. Tanaka A, Sakaguchi S. 2017. Regulatory T cells in cancer immunotherapy. Cell Res. 27: 109-118. https://doi.org/10.1038/cr.2016.151
  8. Itahashi K, Irie T, Nishikawa H. 2022. Regulatory T-cell development in the tumor microenvironment. Eur. J. Immunol. 52: 1216-1227. https://doi.org/10.1002/eji.202149358
  9. Chen BJ, Zhao JW, Zhang DH, Zheng AH, Wu GQ. 2022. Immunotherapy of cancer by targeting regulatory T cells. Int. Immunopharmacol. 104: 108469. https://doi.org/10.1016/j.intimp.2021.108469
  10. Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19: 55-71. https://doi.org/10.1038/s41579-020-0433-9
  11. Sorbara MT, Pamer EG. 2022. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20: 365-380. https://doi.org/10.1038/s41579-021-00667-9
  12. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. 2018. Current understanding of the human microbiome. Nat. Med. 24: 392-400. https://doi.org/10.1038/nm.4517
  13. Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336: 1268-1273. https://doi.org/10.1126/science.1223490
  14. Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506. https://doi.org/10.1038/s41422-020-0332-7
  15. Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. 2018. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 9: 1830. https://doi.org/10.3389/fimmu.2018.01830
  16. Marchesi JR, Ravel J. 2015. The vocabulary of microbiome research: a proposal. Microbiome 3: 31. https://doi.org/10.1186/s40168-015-0094-5
  17. Berg G, Rybakova D, Fischer D, Cernava T, Verges MC, Charles T, et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8: 103. https://doi.org/10.1186/s40168-020-00875-0
  18. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13: 260-270. https://doi.org/10.1038/nrg3182
  19. Blum HE. 2017. The human microbiome. Adv. Med. Sci. 62: 414-420. https://doi.org/10.1016/j.advms.2017.04.005
  20. Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd Allah EF. 2018. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol. 9: 2868. https://doi.org/10.3389/fimmu.2018.02868
  21. Wensel CR, Pluznick JL, Salzberg SL, Sears CL. 2022. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J. Clin. Invest. 132: e154944. https://doi.org/10.1172/JCI154944
  22. Finotello F, Mastrorilli E, Di Camillo B. 2018. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief Bioinform. 19: 679-692.
  23. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. 2016. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533: 543-546. https://doi.org/10.1038/nature17645
  24. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307: 1915-1920. https://doi.org/10.1126/science.1104816
  25. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359. https://doi.org/10.1126/science.1124234
  26. Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14: e1002533. https://doi.org/10.1371/journal.pbio.1002533
  27. Morais LH, Schreiber HLt, Mazmanian SK. 2021. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19: 241-255. https://doi.org/10.1038/s41579-020-00460-0
  28. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, et al. 2018. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15: 397-411. https://doi.org/10.1038/s41575-018-0011-z
  29. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. 2017. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15: 55-63. https://doi.org/10.1038/nrmicro.2016.142
  30. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277: 32-48. https://doi.org/10.1016/j.bbr.2014.07.027
  31. Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, et al. 2016. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 17: 163. https://doi.org/10.1186/s13059-016-1021-1
  32. Rizzo AE, Gordon JC, Berard AR, Burgener AD, Avril S. 2021. The female reproductive tract microbiome-implications for gynecologic cancers and personalized medicine. J. Pers. Med. 11: 546. https://doi.org/10.3390/jpm11060546
  33. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 Suppl 1: 4680-4687. https://doi.org/10.1073/pnas.1002611107
  34. Eslami S, Hadjati J, Motevaseli E, Mirzaei R, Farashi Bonab S, Ansaripour B, et al. 2016. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS 124: 697-710. https://doi.org/10.1111/apm.12556
  35. Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. 2021. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front. Immunol. 12: 622064. https://doi.org/10.3389/fimmu.2021.622064
  36. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. 2021. The microbiome and human cancer. Science 371: eabc4552. https://doi.org/10.1126/science.abc4552
  37. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. 2019. The microbiome, cancer, and cancer therapy. Nat. Med. 25: 377-388. https://doi.org/10.1038/s41591-019-0377-7
  38. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394-424. https://doi.org/10.3322/caac.21492
  39. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65. https://doi.org/10.1038/nature08821
  40. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031. https://doi.org/10.1038/nature05414
  41. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578-1593. https://doi.org/10.1016/j.cell.2012.04.037
  42. Maruvada P, Leone V, Kaplan LM, Chang EB. 2017. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 22: 589-599. https://doi.org/10.1016/j.chom.2017.10.005
  43. Reddy BS, Weisburger JH, Narisawa T, Wynder EL. 1974. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Res. 34: 2368-2372.
  44. Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. 1975. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 35: 287-290.
  45. Onoue M, Kado S, Sakaitani Y, Uchida K, Morotomi M. 1997. Specific species of intestinal bacteria influence the induction of aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett. 113: 179-186. https://doi.org/10.1016/S0304-3835(97)04698-3
  46. Sears CL, Geis AL, Housseau F. 2014. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Invest. 124: 4166-4172. https://doi.org/10.1172/JCI72334
  47. Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et al. 1998. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115: 281-286. https://doi.org/10.1016/S0016-5085(98)70194-5
  48. Ramirez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, et al. 2020. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer 6: 86-97. https://doi.org/10.1016/j.trecan.2019.12.007
  49. Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. 2020. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol. 4: 33. https://doi.org/10.1038/s41698-020-00138-z
  50. Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, et al. 2018. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer 142: 769-778. https://doi.org/10.1002/ijc.31098
  51. Liu Y, O'Brien JL, Ajami NJ, Scheurer ME, Amirian ES, Armstrong G, et al. 2018. Lung tissue microbial profile in lung cancer is distinct from emphysema. Am. J. Cancer Res. 8: 1775-1787.
  52. Cameron SJS, Lewis KE, Huws SA, Hegarty MJ, Lewis PD, Pachebat JA, et al. 2017. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One 12: e0177062. https://doi.org/10.1371/journal.pone.0177062
  53. Yan X, Yang M, Liu J, Gao R, Hu J, Li J, et al. 2015. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 5: 3111-3122.
  54. Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, et al. 2016. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102: 89-95. https://doi.org/10.1016/j.lungcan.2016.10.016
  55. Sims TT, El Alam MB, Karpinets TV, Dorta-Estremera S, Hegde VL, Nookala S, et al. 2021. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Commun. Biol. 4: 237. https://doi.org/10.1038/s42003-021-01741-x
  56. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. 2019. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178: 795-806 e712. https://doi.org/10.1016/j.cell.2019.07.008
  57. Chao XP, Sun TT, Wang S, Fan QB, Shi HH, Zhu L, et al. 2019. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int. J. Gynecol. Cancer 29: 28-34. https://doi.org/10.1136/ijgc-2018-000032
  58. Keller MJ, Huber A, Espinoza L, Serrano MG, Parikh HI, Buck GA, et al. 2019. Impact of Herpes simplex virus type 2 and human immunodeficiency virus dual infection on female genital tract mucosal immunity and the vaginal microbiome. J. Infect. Dis. 220: 852-861. https://doi.org/10.1093/infdis/jiz203
  59. Liu CM, Packman ZR, Abraham AG, Serwadda DM, Nalugoda F, Aziz M, et al. 2019. The effect of antiretroviral therapy initiation on the vaginal microbiome in HIV-infected women. Open Forum Infect. Dis. 6: ofz328. https://doi.org/10.1093/ofid/ofz328
  60. Jiang N, Xie F, Chen L, Chen F, Sui L. 2020. The effect of TLR4 on the growth and local inflammatory microenvironment of HPV-related cervical cancer in vivo. Infect. Agent Cancer 15: 12. https://doi.org/10.1186/s13027-020-0279-9
  61. Chao X, Sun T, Wang S, Tan X, Fan Q, Shi H, et al. 2020. Research of the potential biomarkers in vaginal microbiome for persistent high-risk human papillomavirus infection. Ann. Transl. Med. 8: 100. https://doi.org/10.21037/atm.2019.12.115
  62. Blanco R, Carrillo-Beltran D, Munoz JP, Corvalan AH, Calaf GM, Aguayo F. 2021. Human Papillomavirus in breast carcinogenesis: A passenger, a cofactor, or a causal agent? Biology (Basel) 10: 804.
  63. Sher G, Salman NA, Kulinski M, Fadel RA, Gupta VK, Anand A, et al. 2020. Prevalence and type distribution of high-risk human papillomavirus (HPV) in breast cancer: A qatar based study. Cancers (Basel) 12: 1528. https://doi.org/10.3390/cancers12061528
  64. Di Lonardo A, Venuti A, Marcante ML. 1992. Human papillomavirus in breast cancer. Breast Cancer Res. Treat. 21: 95-100. https://doi.org/10.1007/BF01836955
  65. Kan CY, Iacopetta BJ, Lawson JS, Whitaker NJ. 2005. Identification of human papillomavirus DNA gene sequences in human breast cancer. Br. J. Cancer 93: 946-948. https://doi.org/10.1038/sj.bjc.6602778
  66. Heng B, Glenn WK, Ye Y, Tran B, Delprado W, Lutze-Mann L, et al. 2009. Human papilloma virus is associated with breast cancer. Br. J. Cancer 101: 1345-1350. https://doi.org/10.1038/sj.bjc.6605282
  67. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. 2020. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368: 973-980. https://doi.org/10.1126/science.aay9189
  68. Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR, et al. 2017. A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One 12: e0188873. https://doi.org/10.1371/journal.pone.0188873
  69. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493. https://doi.org/10.1126/science.1219328
  70. Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, et al. 2015. Neutrophil ageing is regulated by the microbiome. Nature 525: 528-532. https://doi.org/10.1038/nature15367
  71. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, et al. 2007. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117: 2197-2204. https://doi.org/10.1172/JCI32205
  72. Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gomez L, Verginadis I, Bittinger K, et al. 2020. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130: 466-479. https://doi.org/10.1172/jci124332
  73. Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F, Lienenklaus S, et al. 2020. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181: 1080-1096 e1019. https://doi.org/10.1016/j.cell.2020.04.022
  74. Nair S, Dhodapkar MV. 2017. Natural killer T cells in cancer immunotherapy. Front. Immunol. 8: 1178. https://doi.org/10.3389/fimmu.2017.01178
  75. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. 2018. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360: eaan5931. https://doi.org/10.1126/science.aan5931
  76. Shen S, Prame Kumar K, Stanley D, Moore RJ, Van TTH, Wen SW, et al. 2018. Invariant natural killer T cells shape the gut microbiota and regulate neutrophil recruitment and function during intestinal inflammation. Front. Immunol. 9: 999. https://doi.org/10.3389/fimmu.2018.00999
  77. Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. 2018. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 9: 17937-17950. https://doi.org/10.18632/oncotarget.24788
  78. Mills CD. 2012. M1 and M2 macrophages: Oracles of health and disease. Crit. Rev. Immunol. 32: 463-488. https://doi.org/10.1615/CritRevImmunol.v32.i6.10
  79. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40: 274-288. https://doi.org/10.1016/j.immuni.2014.01.006
  80. Van den Bossche J, Saraber DL. 2018. Metabolic regulation of macrophages in tissues. Cell Immunol. 330: 54-59. https://doi.org/10.1016/j.cellimm.2018.01.009
  81. Pathria P, Louis TL, Varner JA. 2019. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40: 310-327. https://doi.org/10.1016/j.it.2019.02.003
  82. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. 2018. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8: 403-416. https://doi.org/10.1158/2159-8290.cd-17-1134
  83. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14: 207-215. https://doi.org/10.1016/j.chom.2013.07.007
  84. Park HE, Kim JH, Cho NY, Lee HS, Kang GH. 2017. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 471: 329-336. https://doi.org/10.1007/s00428-017-2171-6
  85. Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510: 152-156. https://doi.org/10.1038/nature13279
  86. Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. 2018. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9: 3555. https://doi.org/10.1038/s41467-018-05901-2
  87. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337-341. https://doi.org/10.1126/science.1198469
  88. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, et al. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34: 794-806. https://doi.org/10.1016/j.immuni.2011.03.021
  89. Lee N, Kim WU. 2017. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 49: e340. https://doi.org/10.1038/emm.2017.36
  90. Salvador R, Zhang A, Horai R, Caspi RR. 2020. Microbiota as drivers and as therapeutic targets in ocular and tissue specific autoimmunity. Front. Cell Dev. Biol. 8: 606751. https://doi.org/10.3389/fcell.2020.606751
  91. Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb H, et al. 2019. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat. Med. 25: 1164-1174. https://doi.org/10.1038/s41591-019-0461-z
  92. Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. 2018. Gut Microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155: 33-37 e36. https://doi.org/10.1053/j.gastro.2018.04.001
  93. Burnet FM. 1970. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13: 1-27. https://doi.org/10.1159/000386035
  94. Rygaard J, Povlsen CO. 1976. The nude mouse vs. the hypothesis of immunological surveillance. Transplant. Rev. 28: 43-61.
  95. Dunn GP, Koebel CM, Schreiber RD. 2006. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6: 836-848. https://doi.org/10.1038/nri1961
  96. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. 2001. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107-1111. https://doi.org/10.1038/35074122
  97. Tauriello DVF, Sancho E, Batlle E. 2022. Overcoming TGFbeta-mediated immune evasion in cancer. Nat. Rev. Cancer 22: 25-44. https://doi.org/10.1038/s41568-021-00413-6
  98. Kim SK, Cho SW. 2022. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front. Pharmacol. 13: 868695. https://doi.org/10.3389/fphar.2022.868695
  99. Bogen B. 1996. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur. J. Immunol. 26: 2671-2679. https://doi.org/10.1002/eji.1830261119
  100. Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, et al. 1998. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc. Natl. Acad. Sci. USA 95: 1178-1183. https://doi.org/10.1073/pnas.95.3.1178
  101. Vignali DA, Collison LW, Workman CJ. 2008. How regulatory T cells work. Nat. Rev. Immunol. 8: 523-532. https://doi.org/10.1038/nri2343
  102. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, et al. 2001. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194: 823-832. https://doi.org/10.1084/jem.194.6.823
  103. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, et al. 2005. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J. Exp. Med. 201: 1591-1602. https://doi.org/10.1084/jem.20042167
  104. Yu H, Pardoll D, Jove R. 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9: 798-809. https://doi.org/10.1038/nrc2734
  105. Kusmartsev S, Gabrilovich DI. 2006. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol. Immunother. 55: 237-245. https://doi.org/10.1007/s00262-005-0048-z
  106. Young MR, Petruzzelli GJ, Kolesiak K, Achille N, Lathers DM, Gabrilovich DI. 2001. Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34(+) progenitor cells. Hum. Immunol. 62: 332-341. https://doi.org/10.1016/S0198-8859(01)00222-1
  107. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al. 2002. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168: 689-695. https://doi.org/10.4049/jimmunol.168.2.689
  108. Nagaraj S, Gabrilovich DI. 2010. Myeloid-derived suppressor cells in human cancer. Cancer J. 16: 348-353. https://doi.org/10.1097/ppo.0b013e3181eb3358
  109. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. 2012. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12: 253-268. https://doi.org/10.1038/nri3175
  110. Schmielau J, Finn OJ. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61: 4756-4760.
  111. Sears CL, Garrett WS. 2014. Microbes, microbiota, and colon cancer. Cell Host Microbe. 15: 317-328. https://doi.org/10.1016/j.chom.2014.02.007
  112. Yang Y, Jobin C. 2017. Novel insights into microbiome in colitis and colorectal cancer. Curr. Opin. Gastroenterol. 33: 422-427. https://doi.org/10.1097/MOG.0000000000000399
  113. Brennan CA, Garrett WS. 2016. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 70: 395-411. https://doi.org/10.1146/annurev-micro-102215-095513
  114. Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WK, et al. 2015. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6: 8727. https://doi.org/10.1038/ncomms9727
  115. Lu Y, Chen J, Zheng J, Hu G, Wang J, Huang C, et al. 2016. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci. Rep. 6: 26337. https://doi.org/10.1038/srep26337
  116. Gao Z, Guo B, Gao R, Zhu Q, Qin H. 2015. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 6: 20. https://doi.org/10.3389/fmicb.2015.00020
  117. Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, et al. 2017. Gavage of fecal samples from patients with colorectal cancer promotes intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 153: 1621-1633 e1626. https://doi.org/10.1053/j.gastro.2017.08.022
  118. Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. 2017. Colonization with enterotoxigenic bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 12: e0171602. https://doi.org/10.1371/journal.pone.0171602
  119. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15: 1016-1022. https://doi.org/10.1038/nm.2015
  120. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60: 208-215. https://doi.org/10.1093/cid/ciu787
  121. Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, et al. 2012. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc. Natl. Acad. Sci. USA 109: E1820-1829.
  122. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42: 344-355. https://doi.org/10.1016/j.immuni.2015.01.010
  123. Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. 2014. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5: 675-680. https://doi.org/10.4161/19490976.2014.969989
  124. Tomkovich S, Yang Y, Winglee K, Gauthier J, Muhlbauer M, Sun X, et al. 2017. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 77: 2620-2632.
  125. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, et al. 2019. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 68: 289-300. https://doi.org/10.1136/gutjnl-2018-317200
  126. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 14: 195-206. https://doi.org/10.1016/j.chom.2013.07.012
  127. Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M, et al. 2017. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 402: 9-15. https://doi.org/10.1016/j.canlet.2017.05.001
  128. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499: 97-101. https://doi.org/10.1038/nature12347
  129. Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. 2021. Gut microbiome, liver immunology, and liver diseases. Cell Mol. Immunol. 18: 4-17. https://doi.org/10.1038/s41423-020-00592-6
  130. Garcia-Castillo V, Sanhueza E, McNerney E, Onate SA, Garcia A. 2016. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J. Med. Microbiol. 65: 1347-1362. https://doi.org/10.1099/jmm.0.000371
  131. Kwa M, Plottel CS, Blaser MJ, Adams S. 2016. The intestinal microbiome and estrogen receptor-positive female breast cancer. J. Natl. Cancer Inst. 108: djw029.
  132. Shapira I, Sultan K, Lee A, Taioli E. 2013. Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. ISRN Oncol. 2013: 693920. https://doi.org/10.1155/2013/693920
  133. Lakritz JR, Poutahidis T, Levkovich T, Varian BJ, Ibrahim YM, Chatzigiagkos A, et al. 2014. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int. J. Cancer 135: 529-540. https://doi.org/10.1002/ijc.28702
  134. Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, et al. 2020. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11: 3259. https://doi.org/10.1038/s41467-020-16967-2
  135. Dong Q, Chen ES, Zhao C, Jin C. 2021. Host-microbiome interaction in lung cancer. Front. Immunol. 12: 679829. https://doi.org/10.3389/fimmu.2021.679829
  136. Weinberg F, Dickson RP, Nagrath D, Ramnath N. 2020. The lung microbiome: A central mediator of host inflammation and metabolism in lung cancer patients? Cancers (Basel) 13: 13. https://doi.org/10.3390/cancers13010013
  137. Lloyd CM, Marsland BJ. 2017. Lung homeostasis: influence of age, microbes, and the immune system. Immunity 46: 549-561. https://doi.org/10.1016/j.immuni.2017.04.005
  138. Palucka AK, Coussens LM. 2016. The basis of oncoimmunology. Cell 164: 1233-1247. https://doi.org/10.1016/j.cell.2016.01.049
  139. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, et al. 2019. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell 176: 998-1013 e1016. https://doi.org/10.1016/j.cell.2018.12.040
  140. Le Noci V, Guglielmetti S, Arioli S, Camisaschi C, Bianchi F, Sommariva M, et al. 2018. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 24: 3528-3538. https://doi.org/10.1016/j.celrep.2018.08.090
  141. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al. 2016. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1: 16031. https://doi.org/10.1038/nmicrobiol.2016.31
  142. Postow MA, Callahan MK, Wolchok JD. 2015. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33: 1974-1982. https://doi.org/10.1200/JCO.2014.59.4358
  143. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al. 2017. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19: 848-855. https://doi.org/10.1016/j.neo.2017.08.004
  144. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359: 91-97. https://doi.org/10.1126/science.aan3706
  145. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. 2018. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359: 104-108. https://doi.org/10.1126/science.aao3290
  146. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. 2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359: 97-103. https://doi.org/10.1126/science.aan4236
  147. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350: 1084-1089. https://doi.org/10.1126/science.aac4255
  148. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342: 971-976. https://doi.org/10.1126/science.1240537
  149. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342: 967-970. https://doi.org/10.1126/science.1240527
  150. van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, et al. 2009. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin. Infect. Dis. 49: 262-270. https://doi.org/10.1086/599346
  151. Weber D, Oefner PJ, Hiergeist A, Koestler J, Gessner A, Weber M, et al. 2015. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 126: 1723-1728.
  152. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. 2012. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209: 903-911. https://doi.org/10.1084/jem.20112408
  153. Jacobsohn DA, Vogelsang GB. 2007. Acute graft versus host disease. Orphanet. J. Rare Dis. 2: 35. https://doi.org/10.1186/1750-1172-2-35
  154. Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, et al. 2010. MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59: 1079-1087. https://doi.org/10.1136/gut.2009.197434
  155. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. 2016. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7: 10391. https://doi.org/10.1038/ncomms10391
  156. Wang F, Yin Q, Chen L, Davis MM. 2018. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc. Natl. Acad. Sci. USA 115: 157-161. https://doi.org/10.1073/pnas.1712901115
  157. Shen S, Lim G, You Z, Ding W, Huang P, Ran C, et al. 2017. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 20: 1213-1216. https://doi.org/10.1038/nn.4606
  158. Sokol H, Adolph TE. 2018. The microbiota: an underestimated actor in radiation-induced lesions? Gut 67: 1-2. https://doi.org/10.1136/gutjnl-2017-314279
  159. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368: 407-415. https://doi.org/10.1056/NEJMoa1205037
  160. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9: 1044-1049. https://doi.org/10.1016/j.cgh.2011.08.014
  161. Gostin LO, Magnusson RS, Krech R, Patterson DW, Solomon SA, Walton D, et al. 2017. Advancing the right to health-the vital role of law. Am. J. Public Health 107: 1755-1756. https://doi.org/10.2105/AJPH.2017.304077
  162. Shah MA. 2017. Gastric cancer: The gastric microbiota - bacterial diversity and implications. Nat. Rev. Gastroenterol. Hepatol. 14: 692-693. https://doi.org/10.1038/nrgastro.2017.140
  163. Doorakkers E, Lagergren J, Engstrand L, Brusselaers N. 2018. Helicobacter pylori eradication treatment and the risk of gastric adenocarcinoma in a Western population. Gut 67: 2092-2096. https://doi.org/10.1136/gutjnl-2017-315363
  164. Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, et al. 2018. Helicobacter pylori Therapy for the prevention of metachronous gastric vancer. N. Engl. J. Med. 378: 1085-1095. https://doi.org/10.1056/nejmoa1708423
  165. Zhou D, Pan Q, Shen F, Cao HX, Ding WJ, Chen YW, et al. 2017. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7: 1529. https://doi.org/10.1038/s41598-017-01751-y
  166. Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, et al. 2017. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J. Hepatol. 66: 806-815. https://doi.org/10.1016/j.jhep.2016.11.008
  167. Philips CA, Pande A, Shasthry SM, Jamwal KD, Khillan V, Chandel SS, et al. 2017. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: A pilot study. Clin. Gastroenterol. Hepatol. 15: 600-602. https://doi.org/10.1016/j.cgh.2016.10.029
  168. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359: 1151-1156. https://doi.org/10.1126/science.aao5774
  169. Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity 48: 992-1005 e1008. https://doi.org/10.1016/j.immuni.2018.04.022
  170. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108. https://doi.org/10.1126/science.1208344
  171. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500: 585-588. https://doi.org/10.1038/nature12480
  172. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. 2019. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16: 605-616. https://doi.org/10.1038/s41575-019-0173-3
  173. Wang H, Geier MS, Howarth GS. 2016. Prebiotics: a potential treatment strategy for the chemotherapy-damaged gut? Crit. Rev. Food Sci. Nutr. 56: 946-956. https://doi.org/10.1080/10408398.2012.741082
  174. Goldin BR, Gorbach SL. 1980. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J. Natl. Cancer Inst. 64: 263-265. https://doi.org/10.1093/jnci/64.2.263
  175. Thirabunyanon M, Boonprasom P, Niamsup P. 2009. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol. Lett. 31: 571-576. https://doi.org/10.1007/s10529-008-9902-3
  176. Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, et al. 2022. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28: 704-712. https://doi.org/10.1038/s41591-022-01694-6