DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68

  • Zhou, Tong (Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University) ;
  • Hu, Yanbo (School of Food Sciences and Engineering, Chang Chun University) ;
  • Yan, Xuecui (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University) ;
  • Cui, Jing (Central Laboratory, Changchun Normal University) ;
  • Wang, Yibing (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University) ;
  • Luo, Feng (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University) ;
  • Yuan, Ye (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University) ;
  • Yu, Zhenxiang (Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University) ;
  • Zhou, Yifa (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University)
  • Received : 2022.04.08
  • Accepted : 2022.07.04
  • Published : 2022.08.28

Abstract

Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40℃. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.

Keywords

Acknowledgement

This research was supported by the Science and Technology Development Program of Jinlin Province (NO.20190701004GH). We are grateful to Prof. KH Mayo for critical reading and editing of our manuscript.

References

  1. Goellner EM, Utermoehlen J, Kramer R, Classen B. 2011. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 86: 1739-1744. https://doi.org/10.1016/j.carbpol.2011.07.006
  2. Prescott JH, Groman EV, Gulyas G. 1997. New molecular weight forms of arabinogalactan from Larix occidentalis. Carbohydr. Res. 301: 89-93. https://doi.org/10.1016/S0008-6215(97)00078-5
  3. Tang S, Jiang M, Huang C, Lai C, Fan Y, Yong Q. 2018. Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. Carbohydr. Polym. 200: 408-415. https://doi.org/10.1016/j.carbpol.2018.08.027
  4. Currier NL, Lejtenyi D, Miller SC. 2003. Effect over time of in-vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow. Phytomedicine 10: 145-153. https://doi.org/10.1078/094471103321659852
  5. Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G. 1988. Inhibition of liver tumor cell colonization in two animal tumor models by lectin blocking with D Galactose or arabinogalactan. Clin. Exp. Metastasis 6: 115-120. https://doi.org/10.1007/BF01784842
  6. Enriquez PM, Chu J, Josephson L, Tennant BC. 1995. Conjugation of Adenine arabinoside 5'-Monophosphate to arabinogalactan: Synthesis, characterization, and antiviral activity. Bioconjug. Chem. 6: 195-202. https://doi.org/10.1021/bc00032a007
  7. Riede L, Grube B, Gruenwald J. 2013. Larch arabinogalactan effects on reducing incidence of upper respiratory infections. Curr. Med. Res. Opin. 29: 251-258. https://doi.org/10.1185/03007995.2013.765837
  8. Scigelova M, Singh S, Crout DHG. 1999. Glycosidases-a great synthetic tool. J. Mol. Catal. B Enzym. 6: 483-494. https://doi.org/10.1016/S1381-1177(99)00012-0
  9. Muller M, Calvert M, Hottmann I, Kluj RM, Mayer C. 2021. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. J. Biol. Chem. 296: 100519. https://doi.org/10.1016/j.jbc.2021.100519
  10. Yang H, Ichinose H, Yoshida M, Nakajima M, Kobayashi H, Kaneko S. 2006. Characterization of a thermostable Endo-β-1,4- galactanase from the Hyperthermophile Thermotoga maritima. Biosci. Biotechnol. Biochem. 70: 538-541. https://doi.org/10.1271/bbb.70.538
  11. Wang D, Li K, Wang GZ, Li ZY, Qin XM, Du GH, et al. 2018. Establishment of fingerprint of Astragali Radix polysaccharides based on endo-1,4-β-malactanase hydrolysis and identification of Astragali Radix of different germplasm resources. Zhongguo Zhong Yao Za Zhi. 43: 2964-2972.
  12. Bueren AL, Mulder M, Leeuwen SV, Dijkhuizen L. 2017. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Sci. Rep. 7: 40478. https://doi.org/10.1038/srep40478
  13. Ichinose H, Kotake T, Tsumuraya Y, Kaneko S. 2006. Characterization of an exo-β-1,3-D-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins. Biosci. Biotechnol. Biochem. 70: 2745-50. https://doi.org/10.1271/bbb.60365
  14. Lemaire A, Garzon CD, Perrin A, Habrylo O, Trezel P, Bassard S, et al. 2020. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr. Polym. 248: 116752. https://doi.org/10.1016/j.carbpol.2020.116752
  15. Torpenholt S, Poulsen J, Muderspach SJ, Maria LD, Leggio LL. 2019. Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose. Acta Crystallogr. F Struct. Biol. Commun. 75: 399-404. https://doi.org/10.1107/S2053230X19005612
  16. Okemoto K, Uekita T, Tsumuraya Y, Hashimoto Y, Kasama T. 2003. Purification and characterization of an endo-β-(1→6)- galactanase from Trichoderma viride. Carbohydr. Re. 338: 219-230. https://doi.org/10.1016/S0008-6215(02)00405-6
  17. Tsumuraya Y, Mochizuki N, Hashimoto Y, Kovac P. 1990. Purification of an exo-β-(1→3)-D-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J. Biol. Chem. 265: 7207-7215. https://doi.org/10.1016/S0021-9258(19)39100-8
  18. Kotake T, Kitazawa K, Takata R, Okabe K, Ichinose H, Kaneko S, et al. 2009. Molecular cloning and expression in Pichia pastoris of a Irpex lacteus exo-β-(1→3)-galactanase Gene. Biosci. Biotechnol. Biochem. 73: 2303-2309. https://doi.org/10.1271/bbb.90433
  19. Fujita K, Sakaguchi T, Sakamoto A, Shimokawa M, Kitahara K. 2014. Bifidobacterium longum subsp. longum Exo-β-1,3- Galactanase, an Enzyme for the Degradation of Type II Arabinogalactan. Appl. Environ. Microbiol. 80: 4577-4584. https://doi.org/10.1128/AEM.00802-14
  20. Okawa M, Fukamachi K, Tanaka H, Sakamoto T. 2013. Identification of an exo-β-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan. Appl. Microbiol. Biotechnol. 97: 9685-9694. https://doi.org/10.1007/s00253-013-4759-3
  21. Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K, Tsumuraya Y, et al. 2005 An exo-beta-1,3-galactanase having a novel beta-1,3- galactan-binding module from Phanerochaete chrysosporium. J. Biol. Chem. 280: 25820-25829. https://doi.org/10.1074/jbc.M501024200
  22. Ishida T, Fujimoto Z, Ichinose H, Igarashi K, Kaneko S, Samejima M. 2009. Crystallization of selenomethionyl exo-beta-1,3- galactanase from the basidiomycete Phanerochaete chrysosporium. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 1274-1276. https://doi.org/10.1107/S1744309109043395
  23. Ichinose H, Kuno A, Kotake T, Yoshida M, Sakka K, Hirabayashi J, et al. 2006. Characterization of an exo-beta-1,3-galactanase from Clostridium thermocellum. Appl. Environ. Microbiol. 72: 3515-3523. https://doi.org/10.1128/AEM.72.5.3515-3523.2006
  24. Jiang D, Fan J, Wang X, Zhao Y, Huang B, Liu J, et al. 2012. Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum. J. Struct. Biol. 80: 447-457.
  25. Ichinose H, Kotake T, Tsumuraya Y, et al. 2006. Characterization of an exo-β-1,3-D-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins. J. Agric. Chem. Soc. Japan 70: 6.
  26. Ling NX, Lee J, Ellis M, Liao ML, Mau SL, Guest D, et al. 2012. An exo-β-(1→3)-D-galactanase from Streptomyces sp. provides insights into type II arabinogalactan structure. Carbohydr. Res. 352: 70-81. https://doi.org/10.1016/j.carres.2012.02.033
  27. Hu Y, Yan X, Zhang H, Liu J, Luo F, Cui Y, et al. 2018. Cloning and expression of a novel α-1,3-arabinofuranosidase from Penicillium oxalicum sp. 68. AMB Express 8: 51. https://doi.org/10.1186/s13568-018-0577-4
  28. Li J, Liu G, Chen M, Li Z, Qin Y, Qu Y. 2013. Cellodextrin transporters play important roles in cellulose induction in the cellulolytic fungus Penicillium oxalicum. Appl. Microbiol. Biotechnol. 97: 10479-10488. https://doi.org/10.1007/s00253-013-5301-3
  29. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  30. Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23. https://doi.org/10.1016/S0021-9258(19)50870-5
  31. Tsumuraya Y, Hashimoto Y, Yamamoto S, Shibuya N. 1984. Structure of l-arabino-d-galactan-containing glycoproteins from radish leaves. Carbohydr. Res. 134: 215-228. https://doi.org/10.1016/0008-6215(84)85039-9
  32. Zhang X, Li Y, Bi H, Li X, Ni W, Han H, et al. 2009. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym. 77: 544-552. https://doi.org/10.1016/j.carbpol.2009.01.034
  33. Wu D, Cui L, Yang G, Ning X, Sun L, Zhou Y. 2018. Preparing rhamnogalacturonan II domains from seven plant pectins using Penicillium oxalicum degradation and their structural comparison. Carbohydr. Polym. 108: 209-215.
  34. Shakhmatov EG, Belyy VA, Makarova EN. 2018. Structure of acid-extractable polysaccharides of tree greenery of Picea abies. Carbohydr. Polym. 199: 320-330. https://doi.org/10.1016/j.carbpol.2018.07.027
  35. Yao Y, Jian Y, Du Z, Wang P, Kan D. 2018. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydr. Polym. 202: 134-142. https://doi.org/10.1016/j.carbpol.2018.08.098
  36. Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R, et al. 2011. Endo-β-1,3-galactanase from winter mushroom flammulina velutipes. J. Biol. Chem. 286: 27848-27854. https://doi.org/10.1074/jbc.M111.251736
  37. Ali N, Xue Y,Gan L, Liub J, Longb M. 2016. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from aspergillus niger be-2. Appl. Biochem. Microbiol. 52: 564-571. https://doi.org/10.1134/S0003683816050045
  38. Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H, et al. 2011. Identification of a GH62 alpha-L-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 90: 137-146. https://doi.org/10.1007/s00253-010-2988-2
  39. Dragosits M, Pflugl S, Kurz S, Razzazi-Fazeli E, Wilson I, Rendic D. 2014. Recombinant aspergillus β-galactosidases as a robust glycomic and biotechnological tool. Appl. Microbiol. Biotechnol. 98: 3553-3567. https://doi.org/10.1007/s00253-013-5192-3
  40. Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y. 2004. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-->6)-galactanase gene. Biochem. J. 377: 749-755. https://doi.org/10.1042/bj20031145
  41. Kato H, Takeuchi Y, Tsumuraya Y, Hashimoto Y, Nakano H, Kova P. 2003. In vitro biosynthesis of galactans by membrane-bound galactosyltransferase from radish (Raphanus sativus L.) seedlings. Planta 217: 271-82. https://doi.org/10.1007/s00425-003-0978-7
  42. Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, et al. 2019. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem. 295: 653-661. https://doi.org/10.1016/j.foodchem.2019.05.163
  43. Jordan DB, Wagschal K, Grigorescu AA, Braker JD. 2013. Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. Appl. Microbiol. Biotechnol. 97: 4415-28. https://doi.org/10.1007/s00253-012-4475-4
  44. Vandermarliere E, Bourgois TM, Winn MD, Van Campenhout S, Volckaert G, Delcour JA, et al. 2009. Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem. J. 418: 39-47. https://doi.org/10.1042/BJ20081256