Acknowledgement
This research was supported by the Science and Technology Development Program of Jinlin Province (NO.20190701004GH). We are grateful to Prof. KH Mayo for critical reading and editing of our manuscript.
References
- Goellner EM, Utermoehlen J, Kramer R, Classen B. 2011. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 86: 1739-1744. https://doi.org/10.1016/j.carbpol.2011.07.006
- Prescott JH, Groman EV, Gulyas G. 1997. New molecular weight forms of arabinogalactan from Larix occidentalis. Carbohydr. Res. 301: 89-93. https://doi.org/10.1016/S0008-6215(97)00078-5
- Tang S, Jiang M, Huang C, Lai C, Fan Y, Yong Q. 2018. Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. Carbohydr. Polym. 200: 408-415. https://doi.org/10.1016/j.carbpol.2018.08.027
- Currier NL, Lejtenyi D, Miller SC. 2003. Effect over time of in-vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow. Phytomedicine 10: 145-153. https://doi.org/10.1078/094471103321659852
- Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G. 1988. Inhibition of liver tumor cell colonization in two animal tumor models by lectin blocking with D Galactose or arabinogalactan. Clin. Exp. Metastasis 6: 115-120. https://doi.org/10.1007/BF01784842
- Enriquez PM, Chu J, Josephson L, Tennant BC. 1995. Conjugation of Adenine arabinoside 5'-Monophosphate to arabinogalactan: Synthesis, characterization, and antiviral activity. Bioconjug. Chem. 6: 195-202. https://doi.org/10.1021/bc00032a007
- Riede L, Grube B, Gruenwald J. 2013. Larch arabinogalactan effects on reducing incidence of upper respiratory infections. Curr. Med. Res. Opin. 29: 251-258. https://doi.org/10.1185/03007995.2013.765837
- Scigelova M, Singh S, Crout DHG. 1999. Glycosidases-a great synthetic tool. J. Mol. Catal. B Enzym. 6: 483-494. https://doi.org/10.1016/S1381-1177(99)00012-0
- Muller M, Calvert M, Hottmann I, Kluj RM, Mayer C. 2021. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. J. Biol. Chem. 296: 100519. https://doi.org/10.1016/j.jbc.2021.100519
- Yang H, Ichinose H, Yoshida M, Nakajima M, Kobayashi H, Kaneko S. 2006. Characterization of a thermostable Endo-β-1,4- galactanase from the Hyperthermophile Thermotoga maritima. Biosci. Biotechnol. Biochem. 70: 538-541. https://doi.org/10.1271/bbb.70.538
- Wang D, Li K, Wang GZ, Li ZY, Qin XM, Du GH, et al. 2018. Establishment of fingerprint of Astragali Radix polysaccharides based on endo-1,4-β-malactanase hydrolysis and identification of Astragali Radix of different germplasm resources. Zhongguo Zhong Yao Za Zhi. 43: 2964-2972.
- Bueren AL, Mulder M, Leeuwen SV, Dijkhuizen L. 2017. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Sci. Rep. 7: 40478. https://doi.org/10.1038/srep40478
- Ichinose H, Kotake T, Tsumuraya Y, Kaneko S. 2006. Characterization of an exo-β-1,3-D-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins. Biosci. Biotechnol. Biochem. 70: 2745-50. https://doi.org/10.1271/bbb.60365
- Lemaire A, Garzon CD, Perrin A, Habrylo O, Trezel P, Bassard S, et al. 2020. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr. Polym. 248: 116752. https://doi.org/10.1016/j.carbpol.2020.116752
- Torpenholt S, Poulsen J, Muderspach SJ, Maria LD, Leggio LL. 2019. Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose. Acta Crystallogr. F Struct. Biol. Commun. 75: 399-404. https://doi.org/10.1107/S2053230X19005612
- Okemoto K, Uekita T, Tsumuraya Y, Hashimoto Y, Kasama T. 2003. Purification and characterization of an endo-β-(1→6)- galactanase from Trichoderma viride. Carbohydr. Re. 338: 219-230. https://doi.org/10.1016/S0008-6215(02)00405-6
- Tsumuraya Y, Mochizuki N, Hashimoto Y, Kovac P. 1990. Purification of an exo-β-(1→3)-D-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J. Biol. Chem. 265: 7207-7215. https://doi.org/10.1016/S0021-9258(19)39100-8
- Kotake T, Kitazawa K, Takata R, Okabe K, Ichinose H, Kaneko S, et al. 2009. Molecular cloning and expression in Pichia pastoris of a Irpex lacteus exo-β-(1→3)-galactanase Gene. Biosci. Biotechnol. Biochem. 73: 2303-2309. https://doi.org/10.1271/bbb.90433
- Fujita K, Sakaguchi T, Sakamoto A, Shimokawa M, Kitahara K. 2014. Bifidobacterium longum subsp. longum Exo-β-1,3- Galactanase, an Enzyme for the Degradation of Type II Arabinogalactan. Appl. Environ. Microbiol. 80: 4577-4584. https://doi.org/10.1128/AEM.00802-14
- Okawa M, Fukamachi K, Tanaka H, Sakamoto T. 2013. Identification of an exo-β-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan. Appl. Microbiol. Biotechnol. 97: 9685-9694. https://doi.org/10.1007/s00253-013-4759-3
- Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K, Tsumuraya Y, et al. 2005 An exo-beta-1,3-galactanase having a novel beta-1,3- galactan-binding module from Phanerochaete chrysosporium. J. Biol. Chem. 280: 25820-25829. https://doi.org/10.1074/jbc.M501024200
- Ishida T, Fujimoto Z, Ichinose H, Igarashi K, Kaneko S, Samejima M. 2009. Crystallization of selenomethionyl exo-beta-1,3- galactanase from the basidiomycete Phanerochaete chrysosporium. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 1274-1276. https://doi.org/10.1107/S1744309109043395
- Ichinose H, Kuno A, Kotake T, Yoshida M, Sakka K, Hirabayashi J, et al. 2006. Characterization of an exo-beta-1,3-galactanase from Clostridium thermocellum. Appl. Environ. Microbiol. 72: 3515-3523. https://doi.org/10.1128/AEM.72.5.3515-3523.2006
- Jiang D, Fan J, Wang X, Zhao Y, Huang B, Liu J, et al. 2012. Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum. J. Struct. Biol. 80: 447-457.
- Ichinose H, Kotake T, Tsumuraya Y, et al. 2006. Characterization of an exo-β-1,3-D-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins. J. Agric. Chem. Soc. Japan 70: 6.
- Ling NX, Lee J, Ellis M, Liao ML, Mau SL, Guest D, et al. 2012. An exo-β-(1→3)-D-galactanase from Streptomyces sp. provides insights into type II arabinogalactan structure. Carbohydr. Res. 352: 70-81. https://doi.org/10.1016/j.carres.2012.02.033
- Hu Y, Yan X, Zhang H, Liu J, Luo F, Cui Y, et al. 2018. Cloning and expression of a novel α-1,3-arabinofuranosidase from Penicillium oxalicum sp. 68. AMB Express 8: 51. https://doi.org/10.1186/s13568-018-0577-4
- Li J, Liu G, Chen M, Li Z, Qin Y, Qu Y. 2013. Cellodextrin transporters play important roles in cellulose induction in the cellulolytic fungus Penicillium oxalicum. Appl. Microbiol. Biotechnol. 97: 10479-10488. https://doi.org/10.1007/s00253-013-5301-3
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23. https://doi.org/10.1016/S0021-9258(19)50870-5
- Tsumuraya Y, Hashimoto Y, Yamamoto S, Shibuya N. 1984. Structure of l-arabino-d-galactan-containing glycoproteins from radish leaves. Carbohydr. Res. 134: 215-228. https://doi.org/10.1016/0008-6215(84)85039-9
- Zhang X, Li Y, Bi H, Li X, Ni W, Han H, et al. 2009. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym. 77: 544-552. https://doi.org/10.1016/j.carbpol.2009.01.034
- Wu D, Cui L, Yang G, Ning X, Sun L, Zhou Y. 2018. Preparing rhamnogalacturonan II domains from seven plant pectins using Penicillium oxalicum degradation and their structural comparison. Carbohydr. Polym. 108: 209-215.
- Shakhmatov EG, Belyy VA, Makarova EN. 2018. Structure of acid-extractable polysaccharides of tree greenery of Picea abies. Carbohydr. Polym. 199: 320-330. https://doi.org/10.1016/j.carbpol.2018.07.027
- Yao Y, Jian Y, Du Z, Wang P, Kan D. 2018. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydr. Polym. 202: 134-142. https://doi.org/10.1016/j.carbpol.2018.08.098
- Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R, et al. 2011. Endo-β-1,3-galactanase from winter mushroom flammulina velutipes. J. Biol. Chem. 286: 27848-27854. https://doi.org/10.1074/jbc.M111.251736
- Ali N, Xue Y,Gan L, Liub J, Longb M. 2016. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from aspergillus niger be-2. Appl. Biochem. Microbiol. 52: 564-571. https://doi.org/10.1134/S0003683816050045
- Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H, et al. 2011. Identification of a GH62 alpha-L-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 90: 137-146. https://doi.org/10.1007/s00253-010-2988-2
- Dragosits M, Pflugl S, Kurz S, Razzazi-Fazeli E, Wilson I, Rendic D. 2014. Recombinant aspergillus β-galactosidases as a robust glycomic and biotechnological tool. Appl. Microbiol. Biotechnol. 98: 3553-3567. https://doi.org/10.1007/s00253-013-5192-3
- Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y. 2004. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-->6)-galactanase gene. Biochem. J. 377: 749-755. https://doi.org/10.1042/bj20031145
- Kato H, Takeuchi Y, Tsumuraya Y, Hashimoto Y, Nakano H, Kova P. 2003. In vitro biosynthesis of galactans by membrane-bound galactosyltransferase from radish (Raphanus sativus L.) seedlings. Planta 217: 271-82. https://doi.org/10.1007/s00425-003-0978-7
- Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, et al. 2019. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem. 295: 653-661. https://doi.org/10.1016/j.foodchem.2019.05.163
- Jordan DB, Wagschal K, Grigorescu AA, Braker JD. 2013. Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. Appl. Microbiol. Biotechnol. 97: 4415-28. https://doi.org/10.1007/s00253-012-4475-4
- Vandermarliere E, Bourgois TM, Winn MD, Van Campenhout S, Volckaert G, Delcour JA, et al. 2009. Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem. J. 418: 39-47. https://doi.org/10.1042/BJ20081256