Acknowledgement
The authors would like to thank the referees and editor for reviewing the paper carefully and their valuable comments to improve the quality of the paper.
References
- A. Barros, R. Batista and E. Ribeiro, Jr, Rigidity of gradient almost Ricci solitons, Illinois J. Math., 56(2012), 1267-1279. https://doi.org/10.1215/ijm/1399395831
- A. Barros and J. N. Gomes, A compact gradient generalized quasi-Einstein metric with constant scalar curvature, J. Math. Anal. Appl., 401(2013), 702-705. https://doi.org/10.1016/j.jmaa.2012.12.068
- N. Basu and B. Bhattacharyya, Gradient Ricci almost soliton in Sasakian manifolds, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 32(2016), 161-164.
- A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin(1987).
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in math., 203(2010), Birkhauser.
- D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifold with Q𝜑 = 𝜑Q, Kodai Math. J., 33(2010), 361-368.
- H. D. Cao, Recent progress on Ricci soliton, Adv. Lect. Math., 11(2009), 1-38.
- J. Case, The non-existence of quasi-Einstein metrics, Pacific J. Math., 248(2010), 277-284. https://doi.org/10.2140/pjm.2010.248.277
- J. Case, Y. -J. Shu and G. Wei, Rigidity of quasi-Einstein metrics, Diff. Geom. Appl., 29(2011), 93-100. https://doi.org/10.1016/j.difgeo.2010.11.003
- G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z., 271(2012), 751-756. https://doi.org/10.1007/s00209-011-0888-5
- G. Catino and L. Mazzieri, Gradient Einstein solitons, Non-linear anal., 132(2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
- G. Catino, L. Mazzieri and S. Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math., 17(2015), 1550046, 18pp.
- X. M. Chen, Quasi-Einstein structures and almost cosymplectic manifolds, RACSAM, 72(2020), 14pp.
- U. C. De and P. Majhi, On a type of contact metric manifolds, Lobachevskii J. Math., 34(2013), 89-98. https://doi.org/10.1134/S1995080213010125
- U. C. De and A. Sarkar, On the quasi-conformal curvature tensor of a (κ, µ)-contact metric manifold, Math. Reports, 14(2012), 115-129.
- A. Ghosh, Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds, Ann. Polon. Math., 115(2015), 33-41. https://doi.org/10.4064/ap115-1-3
- C. He and M. Zhu, Ricci solitons on Sasakian manifolds, arXiv : 1109.4407V2 [Math.DG] 26 sep 2011.
- G. Huang and Y. Wei, The classification of (m, ρ)-quasi-Einstein manifolds, Ann. Global Anal. Geom., 44(2013), 269-282. https://doi.org/10.1007/s10455-013-9366-0
- G. Huang, Integral pinched gradient shrinking ρ-Einstein solitons, J. Math. Anal. Appl., 451(2017), 1025-1055. https://doi.org/10.1016/j.jmaa.2017.02.051
- J. B. Jun and A. De, On N(κ)-contact metric manifolds satisfying certain curvature conditions, Kyungpook Math. J., 51(2011), 457-468. https://doi.org/10.5666/KMJ.2011.51.4.457
- J. B. Jun, I. -B. Kim and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34(1999), 293-301.
- M. A. Mirshafeazadeh and B. Bidabad, On generalized quasi-Einstein manifolds, Adv. Pure Appl. Math., 10(2019), 193-202. https://doi.org/10.1515/apam-2017-0112
- M. A. Mirshafeazadeh and B. Bidabad, On the Rigidity of generalized quasi-Einstein manifolds, Bull. Malays. Math. Sci. Soc., 43(2020), 2029-2042. https://doi.org/10.1007/s40840-019-00788-8
- C. Ozgur, Contact metric manifolds with cyclic-parallel Ricci tensor, Differ. Geom. Dyn. Syst., 4(2002), 21-25.
- C. Ozgur and S. Sular, On N(κ)-contact metric manifolds satisfying certain conditions, SUT J. Math., 44(2008), 89-99.
- R. Sharma, Certain results on K-contact and (κ, µ)-contact manifolds, J. Geom., 89(2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
- V. Venkatesha and H. A. Kumara, Gradient ρ-Einstein soliton on almost Kenmotsu manifolds, Ann. Univ. Ferrara Sez. VII Sci. Mat., 65(2019), 375-388. https://doi.org/10.1007/s11565-019-00323-4
- A. Yildiz, U. C. De, C. Murathan and K. Arslan, On the Weyl projective curvature tensor of an N(κ)-contact metric manifold, Mathematica Pannonica, 21(2010), 129-142.