DOI QR코드

DOI QR Code

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kim, Jin-Kook (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 투고 : 2021.11.18
  • 심사 : 2022.09.07
  • 발행 : 2022.09.10

초록

Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

키워드

과제정보

This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C163765-01).

참고문헌

  1. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACIA 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI.
  2. Ahmad, A., Kotsovou, G., Cotsovos, D.M. and Lagaros, N.D. (2018), "Assessing the accuracy of RC design code predictions through the use of artificial neural networks", Int. J. Adv. Struct. Eng., 10, 349-365. https://doi.org/10.1007/s40091-018-0202-4.
  3. Alghazali, H.H. and Myers, J.J. (2017), "Shear behavior of full-scale high volume fly ash-self consolidating concrete (HVFA-SCC) beams", Constr. Build. Mater., 157, 161-171. https://doi.org/10.1016/j.conbuildmat.2017.09.061.
  4. Arezoumandi, M., Drury, J., Volz, J.S. and Khayat, K.H. (2015), "Effect of recycled concrete aggregate replacement level on shear strength of reinforced concrete beams", ACI Mater. J. 112, 559-568. https://doi.org/10.14359/51687766.
  5. Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Procedia Struct. Integrity, 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
  6. Biolzi, L., Cattaneo, S. and Mola, F. (2014), "Bending-shear response of self-consolidating and high-performance reinforced concrete beams", 59, 399-410
  7. Birgisson, S.R. (2011), Shear Resistance of Reinforced Concrete, Thesis in Civil Engineering BSc
  8. Chou, J.S., Ngo, N.T. and Pham, A.D. (2016), "Shear strength prediction in reinforced concrete deep beams using natureinspired metaheuristic support vector regression", J. Comput. Civil Eng., 30, 04015002. https://doi.org/10.1061/(asce)cp.1943-5487.0000466.
  9. Conforti, A., Minelli, F. and Plizzari, G.A. (2017), "Influence of width-to-effective depth ratio on shear strength of reinforced concrete elements without web reinforcement", ACI Struct. J. 114, 995-1006. https://doi.org/10.14359/51689681.
  10. Duan, J., Asteris, P.G., Nguyen, H., Bui, X.N. and Moayedi, H. (2021), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICAXGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0.
  11. EC2 (2011), Eurocode 2: Design of concrete structures - Part 1-1: General Rules and Rules for Buildings.
  12. Elbaz, K., Shen, S.L., Zhou, A., Yuan, D.J. and Xu, Y.S. (2019), "Optimization of EPB shield performance with adaptive neurofuzzy inference system and genetic algorithm", Appl. Sci., 9(4), 780. https://doi.org/10.3390/app9040780.
  13. Feng, Y., Wang, D., Yin, Y., Li, Z. and Hu, Z. (2020), "An XGBoostbased casualty prediction method for terrorist attacks", Complex Intell. Syst., 6(3), 721-740. https://doi.org/10.1007/s40747-020-00173-0.
  14. Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Ann. Stat., 29, 1189-1232. https://doi.org/10.1214/aos/1013203451
  15. Gandomi, A.H., Alavi, A.H., Gandomi, M. and Kazemi, S. (2017), "Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement", Meas. J. Int. Meas Confed., 95, 367-376. https://doi.org/10.1016/j.measurement.2016.10.024.
  16. Gandomi, A.H., Alavi, A.H., Kazemi, S. and Gandomi, M. (2014a), "Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement.", Autom. Constr., 42, 112-121. https://doi.org/10.1016/j.autcon.2014.02.007.
  17. Gandomi, A.H., Mohammadzadeh, S.D, Perez-Ordonez, J.L. and Alavi, A.H. (2014b), "Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups", Appl. Soft. Comput. J., 19, 112-120. https://doi.org/10.1016/j.asoc.2014.02.007.
  18. Gao, X. and Lin, C. (2021), "Prediction model of the failure mode of beam-column joints using machine learning methods", Eng. Fail. Anal., 120, 105072. https://doi.org/10.1016/j.engfailanal.2020.105072.
  19. Golafshani, E.M. and Ashour, A. (2016), "A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups", Adv. Eng. Softw., 97, 29-39. https://doi.org/10.1016/j.advengsoft.2016.02.007.
  20. Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite structures: Prediction based on ANNs", Steel Compos. Struct., 36, 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
  21. He, Z.Q., Liu, Z. and John Ma, Z. (2016), "Simplified shear design of slender reinforced concrete beams with stirrups", J. Struct. Eng., 142, 06015003. https://doi.org/10.1061/(asce)st.1943-541x.0001394.
  22. Hu, B. and Wu, Y.F. (2018), "Effect of shear span-to-depth ratio on shear strength components of RC beams", Eng. Struct., 168, 770-783. https://doi.org/10.1016/j.engstruct.2018.05.017.
  23. Hu, B. and Wu, Y.F. (2017), "Quantification of shear cracking in reinforced concrete beams", Eng. Struct., 147, 666-678. https://doi.org/10.1016/j.engstruct.2017.06.035.
  24. Ignjatovic, I.S., Marinkovic, S.B. and Tosic, N. (2017), "Shear behaviour of recycled aggregate concrete beams with and without shear reinforcement", Eng. Struct., 141, 386-401. https://doi.org/10.1016/j.engstruct.2017.03.026.
  25. Johnson, P.M., Couture, A. and Nicolet, R. (2007), Commision of Inquirey into the Collapse of a Portion of the de la Concorde Overpass.
  26. Jumaa, G.B. and Yousif, A.R. (2018), "Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis", Adv. Civil Eng., https://doi.org/10.1155/2018/5157824
  27. Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30, 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008.
  28. Karina, C.N.N., Chun, P. jo Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24, 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
  29. Katkhuda, H. and Shatarat, N. (2016), "Shear behavior of reinforced concrete beams using treated recycled concrete aggregate", Constr. Build. Mater., 125, 63-71. https://doi.org/10.1016/j.conbuildmat.2016.08.034.
  30. Kaveh, A., Dadras Eslamlou, A. and Mahdipour Moghani, R. (2021), "Shear strength prediction of FRP-reinforced concrete beams using an extreme gradient boosting framework", Period Polytech Civil Eng., 1-12. https://doi.org/10.3311/ppci.18901.
  31. Kim, J.K. and Park, Y.D. (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93, 213-222.
  32. Knaack, A.M. and Kurama, Y.C. (2015), "Behavior of reinforced concrete beams with recycled concrete coarse aggregates", J. Struct. Eng., 141, https://doi.org/10.1061/(asce)st.1943541x.0001118.
  33. Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raftpile foundation (ERP) system", Eng. Comput., 36(1), 421-433. https://doi.org/10.1007/s00366-019-00767-4.
  34. Luat, N.V., Han, S.W. and Lee, K. (2021), "Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns", Compos. Struct., 278, 114733. https://doi.org/10.1016/j.compstruct.2021.114733.
  35. Lundberg, S.M. and Lee, S.I. (2017), "A unified approach to interpreting model predictions", Adv. Neural Inform. Processing Syst., 30.
  36. Mangalathu, S., Jang, H., Hwang, S.H. and Jeon, J.S. (2020), "Datadriven machine-learning-based seismic failure mode identification of reinforced concrete shear walls", Eng. Struct., 208, 110331. https://doi.org/10.1016/j.engstruct.2020.110331.
  37. Mangalathu, S. and Jeon, J.S. (2019), "Machine learning-based failure mode recognition of circular reinforced concrete bridge columns: Comparative study", J. Struct. Eng., 145, 04019104. https://doi.org/10.1061/(asce)st.1943-541x.0002402.
  38. Mohammed, H.R.M. and Ismail, S. (2021), "Random forest versus support vector machine models' applicability for predicting beam shear strength", Complexity, https://doi.org/10.1155/2021/9978409.
  39. Molnar, C. (2021), Interpretable Machine Learning. https://doi.org/10.1201/9780367816377-16.
  40. Nguyen-Sy, T., Wakim, J., To, Q.D., Vu, M.N., Nguyen, T.D. and Nguyen, T.T. (2020), "Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method", Construct. Build. Mater., 260, 119757. https://doi.org/10.1016/j.conbuildmat.2020.119757.
  41. Nguyen, D.D., Tran, V.L., Ha, D.H., Nguyen, V.Q. and Lee, T.H. (2021), "A machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Structures, 29, 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.
  42. Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35, 415-437. https://doi.org/10.12989/SCS.2020.35.3.415.
  43. Niwa, J., Yamada, K., Yokozawa, K. and Okamura, H. (1986), "Revaluation of the equation for shear strength of reinforced concrete beams without web reinforcement", Doboku Gakkai Ronbunshu, 1986(372), 167-176. https://doi.org/10.2208/jscej.1986.372_167.
  44. Olalusi, O.B. and Awoyera, P.O. (2021), "Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning", Eng. Struct., 227, https://doi.org/10.1016/j.engstruct.2020.111470.
  45. Pradhan, S., Kumar, S., Barai, S.V. (2018), "Shear performance of recycled aggregate concrete beams: An insight for design aspects", Constr. Build. Mater., 178, 593-611. https://doi.org/10.1016/j.conbuildmat.2018.05.022.
  46. Qi, C., Fourie, A., Ma, G., Tang, X. and Du, X. (2018), "Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability", J. Comput. Civil Eng., 32(2), 04017086. https://doi.org/10.1061/(asce)cp.1943-5487.0000737.
  47. Rahal, K.N. and Alrefaei, Y.T. (2018), "Shear strength of recycled aggregate concrete beams containing stirrups", Constr. Build. Mater., 191, 866-876. https://doi.org/10.1016/j.conbuildmat.2018.10.023.
  48. Rahman, J., Ahmed, K.S., Khan, N.I., Islam, K. and Mangalathu, S. (2021), "Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach", Eng. Struct., 233, 111743. https://doi.org/10.1016/j.engstruct.2020.111743.
  49. Reineck, K.H., Bentz, E., Fitik, B., Kuchma, D.A. and Bayrak, O. (2014), "ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups", ACI Struct. J., 111(5). https://doi.org/10.14359/51686819.
  50. Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
  51. Sangiorgio, F., Silfwerbrand, J. and Mancini, G. (2014), "Assessment of the ACI-DAfStb database of shear tests on slender reinforced concrete beams without stirrups for investigations on the shear capacity scatter", Athens J. Technol. Eng., 1, 181-198. https://doi.org/10.30958/ajte.1-3-2.
  52. Seleemah, A.A. (2005), "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement", Can. J. Civil Eng., 32, 644-657. https://doi.org/10.1139/l05-003.
  53. Sun, H, Burton H V. and Huang, H. (2021), "Machine learning applications for building structural design and performance assessment: State-of-the-art review", J. Build. Eng., 33, 101816. https://doi.org/10.1016/j.jobe.2020.101816.
  54. Syroka-Korol, E. and Tejchman, J. (2014), "Experimental investigations of size effect in reinforced concrete beams failing by shear", Eng. Struct., 58, 63-78. https://doi.org/10.1016/j.engstruct.2013.10.012.
  55. Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Structures, 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.
  56. Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39, 319-335. https://doi.org/10.12989/scs.2021.39.3.319.
  57. Tran, V.L. and Kim, S.E. (2021), "A practical ANN model for predicting the PSS of two-way reinforced concrete slabs", Eng. Comput., 37, 2303-2327. https://doi.org/10.1007/s00366-020-00944-w.
  58. Tran, V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.
  59. Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33, 181-194. https://doi.org/10.12989/scs.2019.33.2.181.
  60. Tureyen, A.K. and Frosch, R.J. (2004), "Concrete shear strength: Another perspective", ACI Struct. J., 101, 584-585.
  61. Venkata Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7, 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
  62. Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259, https://doi.org/10.1016/j.compstruct.2020.113505.
  63. Rahal, K.N. and Alrefaei, Y.T. (2017), "Shear strength of longitudinally reinforced recycled aggregate concrete beams", Eng. Struct., 145, 273-282. https://doi.org/10.1155/2021/6652647.
  64. Zhang, H., Nguyen, H., Bui, X.N., Nguyen-Thoi, T., Bui, T.T., Nguyen, N. and Moayedi, H. (2020), "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm", Resources Policy, 66, 101604. https://doi.org/10.1016/j.resourpol.2020.101604.
  65. Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front., 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
  66. Zhou, J., Shi, X. and Li, X. (2016), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", JVC/J. Vib. Control, 22, 3986-3997. https://doi.org/10.1177/1077546314568172.
  67. Zsutty, B. (1968), "Beam shear strength prediction by analysis of existing data", ACI J. Proc., 65, 943-951. https://doi.org/10.14359/7526.