Acknowledgement
This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C163765-01).
References
- ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACIA 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI.
- Ahmad, A., Kotsovou, G., Cotsovos, D.M. and Lagaros, N.D. (2018), "Assessing the accuracy of RC design code predictions through the use of artificial neural networks", Int. J. Adv. Struct. Eng., 10, 349-365. https://doi.org/10.1007/s40091-018-0202-4.
- Alghazali, H.H. and Myers, J.J. (2017), "Shear behavior of full-scale high volume fly ash-self consolidating concrete (HVFA-SCC) beams", Constr. Build. Mater., 157, 161-171. https://doi.org/10.1016/j.conbuildmat.2017.09.061.
- Arezoumandi, M., Drury, J., Volz, J.S. and Khayat, K.H. (2015), "Effect of recycled concrete aggregate replacement level on shear strength of reinforced concrete beams", ACI Mater. J. 112, 559-568. https://doi.org/10.14359/51687766.
- Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Procedia Struct. Integrity, 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
- Biolzi, L., Cattaneo, S. and Mola, F. (2014), "Bending-shear response of self-consolidating and high-performance reinforced concrete beams", 59, 399-410
- Birgisson, S.R. (2011), Shear Resistance of Reinforced Concrete, Thesis in Civil Engineering BSc
- Chou, J.S., Ngo, N.T. and Pham, A.D. (2016), "Shear strength prediction in reinforced concrete deep beams using natureinspired metaheuristic support vector regression", J. Comput. Civil Eng., 30, 04015002. https://doi.org/10.1061/(asce)cp.1943-5487.0000466.
- Conforti, A., Minelli, F. and Plizzari, G.A. (2017), "Influence of width-to-effective depth ratio on shear strength of reinforced concrete elements without web reinforcement", ACI Struct. J. 114, 995-1006. https://doi.org/10.14359/51689681.
- Duan, J., Asteris, P.G., Nguyen, H., Bui, X.N. and Moayedi, H. (2021), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICAXGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0.
- EC2 (2011), Eurocode 2: Design of concrete structures - Part 1-1: General Rules and Rules for Buildings.
- Elbaz, K., Shen, S.L., Zhou, A., Yuan, D.J. and Xu, Y.S. (2019), "Optimization of EPB shield performance with adaptive neurofuzzy inference system and genetic algorithm", Appl. Sci., 9(4), 780. https://doi.org/10.3390/app9040780.
- Feng, Y., Wang, D., Yin, Y., Li, Z. and Hu, Z. (2020), "An XGBoostbased casualty prediction method for terrorist attacks", Complex Intell. Syst., 6(3), 721-740. https://doi.org/10.1007/s40747-020-00173-0.
- Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Ann. Stat., 29, 1189-1232. https://doi.org/10.1214/aos/1013203451
- Gandomi, A.H., Alavi, A.H., Gandomi, M. and Kazemi, S. (2017), "Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement", Meas. J. Int. Meas Confed., 95, 367-376. https://doi.org/10.1016/j.measurement.2016.10.024.
- Gandomi, A.H., Alavi, A.H., Kazemi, S. and Gandomi, M. (2014a), "Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement.", Autom. Constr., 42, 112-121. https://doi.org/10.1016/j.autcon.2014.02.007.
- Gandomi, A.H., Mohammadzadeh, S.D, Perez-Ordonez, J.L. and Alavi, A.H. (2014b), "Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups", Appl. Soft. Comput. J., 19, 112-120. https://doi.org/10.1016/j.asoc.2014.02.007.
- Gao, X. and Lin, C. (2021), "Prediction model of the failure mode of beam-column joints using machine learning methods", Eng. Fail. Anal., 120, 105072. https://doi.org/10.1016/j.engfailanal.2020.105072.
- Golafshani, E.M. and Ashour, A. (2016), "A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups", Adv. Eng. Softw., 97, 29-39. https://doi.org/10.1016/j.advengsoft.2016.02.007.
- Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite structures: Prediction based on ANNs", Steel Compos. Struct., 36, 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
- He, Z.Q., Liu, Z. and John Ma, Z. (2016), "Simplified shear design of slender reinforced concrete beams with stirrups", J. Struct. Eng., 142, 06015003. https://doi.org/10.1061/(asce)st.1943-541x.0001394.
- Hu, B. and Wu, Y.F. (2018), "Effect of shear span-to-depth ratio on shear strength components of RC beams", Eng. Struct., 168, 770-783. https://doi.org/10.1016/j.engstruct.2018.05.017.
- Hu, B. and Wu, Y.F. (2017), "Quantification of shear cracking in reinforced concrete beams", Eng. Struct., 147, 666-678. https://doi.org/10.1016/j.engstruct.2017.06.035.
- Ignjatovic, I.S., Marinkovic, S.B. and Tosic, N. (2017), "Shear behaviour of recycled aggregate concrete beams with and without shear reinforcement", Eng. Struct., 141, 386-401. https://doi.org/10.1016/j.engstruct.2017.03.026.
- Johnson, P.M., Couture, A. and Nicolet, R. (2007), Commision of Inquirey into the Collapse of a Portion of the de la Concorde Overpass.
- Jumaa, G.B. and Yousif, A.R. (2018), "Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis", Adv. Civil Eng., https://doi.org/10.1155/2018/5157824
- Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30, 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008.
- Karina, C.N.N., Chun, P. jo Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24, 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
- Katkhuda, H. and Shatarat, N. (2016), "Shear behavior of reinforced concrete beams using treated recycled concrete aggregate", Constr. Build. Mater., 125, 63-71. https://doi.org/10.1016/j.conbuildmat.2016.08.034.
- Kaveh, A., Dadras Eslamlou, A. and Mahdipour Moghani, R. (2021), "Shear strength prediction of FRP-reinforced concrete beams using an extreme gradient boosting framework", Period Polytech Civil Eng., 1-12. https://doi.org/10.3311/ppci.18901.
- Kim, J.K. and Park, Y.D. (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93, 213-222.
- Knaack, A.M. and Kurama, Y.C. (2015), "Behavior of reinforced concrete beams with recycled concrete coarse aggregates", J. Struct. Eng., 141, https://doi.org/10.1061/(asce)st.1943541x.0001118.
- Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raftpile foundation (ERP) system", Eng. Comput., 36(1), 421-433. https://doi.org/10.1007/s00366-019-00767-4.
- Luat, N.V., Han, S.W. and Lee, K. (2021), "Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns", Compos. Struct., 278, 114733. https://doi.org/10.1016/j.compstruct.2021.114733.
- Lundberg, S.M. and Lee, S.I. (2017), "A unified approach to interpreting model predictions", Adv. Neural Inform. Processing Syst., 30.
- Mangalathu, S., Jang, H., Hwang, S.H. and Jeon, J.S. (2020), "Datadriven machine-learning-based seismic failure mode identification of reinforced concrete shear walls", Eng. Struct., 208, 110331. https://doi.org/10.1016/j.engstruct.2020.110331.
- Mangalathu, S. and Jeon, J.S. (2019), "Machine learning-based failure mode recognition of circular reinforced concrete bridge columns: Comparative study", J. Struct. Eng., 145, 04019104. https://doi.org/10.1061/(asce)st.1943-541x.0002402.
- Mohammed, H.R.M. and Ismail, S. (2021), "Random forest versus support vector machine models' applicability for predicting beam shear strength", Complexity, https://doi.org/10.1155/2021/9978409.
- Molnar, C. (2021), Interpretable Machine Learning. https://doi.org/10.1201/9780367816377-16.
- Nguyen-Sy, T., Wakim, J., To, Q.D., Vu, M.N., Nguyen, T.D. and Nguyen, T.T. (2020), "Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method", Construct. Build. Mater., 260, 119757. https://doi.org/10.1016/j.conbuildmat.2020.119757.
- Nguyen, D.D., Tran, V.L., Ha, D.H., Nguyen, V.Q. and Lee, T.H. (2021), "A machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Structures, 29, 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35, 415-437. https://doi.org/10.12989/SCS.2020.35.3.415.
- Niwa, J., Yamada, K., Yokozawa, K. and Okamura, H. (1986), "Revaluation of the equation for shear strength of reinforced concrete beams without web reinforcement", Doboku Gakkai Ronbunshu, 1986(372), 167-176. https://doi.org/10.2208/jscej.1986.372_167.
- Olalusi, O.B. and Awoyera, P.O. (2021), "Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning", Eng. Struct., 227, https://doi.org/10.1016/j.engstruct.2020.111470.
- Pradhan, S., Kumar, S., Barai, S.V. (2018), "Shear performance of recycled aggregate concrete beams: An insight for design aspects", Constr. Build. Mater., 178, 593-611. https://doi.org/10.1016/j.conbuildmat.2018.05.022.
- Qi, C., Fourie, A., Ma, G., Tang, X. and Du, X. (2018), "Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability", J. Comput. Civil Eng., 32(2), 04017086. https://doi.org/10.1061/(asce)cp.1943-5487.0000737.
- Rahal, K.N. and Alrefaei, Y.T. (2018), "Shear strength of recycled aggregate concrete beams containing stirrups", Constr. Build. Mater., 191, 866-876. https://doi.org/10.1016/j.conbuildmat.2018.10.023.
- Rahman, J., Ahmed, K.S., Khan, N.I., Islam, K. and Mangalathu, S. (2021), "Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach", Eng. Struct., 233, 111743. https://doi.org/10.1016/j.engstruct.2020.111743.
- Reineck, K.H., Bentz, E., Fitik, B., Kuchma, D.A. and Bayrak, O. (2014), "ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups", ACI Struct. J., 111(5). https://doi.org/10.14359/51686819.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Sangiorgio, F., Silfwerbrand, J. and Mancini, G. (2014), "Assessment of the ACI-DAfStb database of shear tests on slender reinforced concrete beams without stirrups for investigations on the shear capacity scatter", Athens J. Technol. Eng., 1, 181-198. https://doi.org/10.30958/ajte.1-3-2.
- Seleemah, A.A. (2005), "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement", Can. J. Civil Eng., 32, 644-657. https://doi.org/10.1139/l05-003.
- Sun, H, Burton H V. and Huang, H. (2021), "Machine learning applications for building structural design and performance assessment: State-of-the-art review", J. Build. Eng., 33, 101816. https://doi.org/10.1016/j.jobe.2020.101816.
- Syroka-Korol, E. and Tejchman, J. (2014), "Experimental investigations of size effect in reinforced concrete beams failing by shear", Eng. Struct., 58, 63-78. https://doi.org/10.1016/j.engstruct.2013.10.012.
- Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Structures, 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.
- Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39, 319-335. https://doi.org/10.12989/scs.2021.39.3.319.
- Tran, V.L. and Kim, S.E. (2021), "A practical ANN model for predicting the PSS of two-way reinforced concrete slabs", Eng. Comput., 37, 2303-2327. https://doi.org/10.1007/s00366-020-00944-w.
- Tran, V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.
- Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33, 181-194. https://doi.org/10.12989/scs.2019.33.2.181.
- Tureyen, A.K. and Frosch, R.J. (2004), "Concrete shear strength: Another perspective", ACI Struct. J., 101, 584-585.
- Venkata Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7, 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
- Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259, https://doi.org/10.1016/j.compstruct.2020.113505.
- Rahal, K.N. and Alrefaei, Y.T. (2017), "Shear strength of longitudinally reinforced recycled aggregate concrete beams", Eng. Struct., 145, 273-282. https://doi.org/10.1155/2021/6652647.
- Zhang, H., Nguyen, H., Bui, X.N., Nguyen-Thoi, T., Bui, T.T., Nguyen, N. and Moayedi, H. (2020), "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm", Resources Policy, 66, 101604. https://doi.org/10.1016/j.resourpol.2020.101604.
- Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front., 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
- Zhou, J., Shi, X. and Li, X. (2016), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", JVC/J. Vib. Control, 22, 3986-3997. https://doi.org/10.1177/1077546314568172.
- Zsutty, B. (1968), "Beam shear strength prediction by analysis of existing data", ACI J. Proc., 65, 943-951. https://doi.org/10.14359/7526.