DOI QR코드

DOI QR Code

GOODSTEIN'S GENERALIZED THEOREM: FROM ROOTED TREE REPRESENTATIONS TO THE HYDRA GAME

  • LEONARDIS, A. (Department of Mathematics and Computer Science, University of Calabria) ;
  • D'ATRI, G. (Department of Mathematics and Computer Science, University of Calabria) ;
  • ZANARDO, E. (Department of Digital Innovation, University of Nicosia)
  • Received : 2021.06.29
  • Accepted : 2022.04.20
  • Published : 2022.09.30

Abstract

A hereditary base-b representation, used in the celebrated Goodstein's theorem, can easily be converted into a labeled rooted tree. In this way it is possible to give a more elementary geometric proof of the aforementioned theorem and to establish a more general version, geometrically proved. This view is very useful for better understanding the underlying logical problems and the need to use transfinite induction in the proof. Similar problems will then be considered, such as the so-called "hydra game".

Keywords

Acknowledgement

This work has been partially supported by POR Calabria FESR-FSE 2014-2020, with the grant for research project "IoT&B", CUP J48C17000230006.

References

  1. W. Ackermann, Zum Hilbe rtschen Aufbau der reellen Zahlen, Mathematische Annalen 99 (1928), 118-133. Doi: 10.1007/BF01459088
  2. L. Antoniotti, F. Caldarola, G. d'Atri and M. Pellegrini, New approaches to basic calculus: an experimentation via numerical computation, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 329-342. Doi: 10.1007/978-3-030-39081-529
  3. L. Antoniotti, F. Caldarola and M. Maiolo, Infinite numerical computing applied to Peano's, Hilbert's, and Moore's curves, Mediterranean J. of Mathematics 17 (2020). Doi:10.1007/s00009-020-01531-5
  4. A.A. Bennett, Note on an Operation of the Third Grade, Annals of Mathematics Second Series 17 (1915), 74-75. Doi: 10.2307/2007124
  5. J. Bowers, Exploding Array Function. http://www.polytope.net/hedrondude/array.htm
  6. A. Caicedo, Goodstein's function, Revista Colombiana de Matematicas 41 (2007), 381-391.
  7. F. Caldarola, The exact measures of the Sierpinski d-dimensional tetrahedron in connection with a Diophantine nonlinear system, Comm. Nonlinear Science and Numer. Simulation 63 (2018), 228-238. Doi: 10.1016/j.cnsns.2018.02.026
  8. F. Caldarola, The Sierpinski curve viewed by numerical computations with infinities and infinitesimals, Appl. Math. Comput. 318 (2018), 321-328. Doi: 10.1016/j.amc.2017.06.024
  9. F. Caldarola, D. Cortese, G. d'Atri and M. Maiolo, Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 358-372. Doi: 10.1007/978-3-030-39081-531
  10. F. Caldarola, G. d'Atri, M. Maiolo and G. Pirillo, New algebraic and geometric constructs arising from Fibonacci numbers. In honor of Masami Ito, Soft Computing 24 (2020), 17497- 17508. Doi: 10.1007/s00500-020-05256-1
  11. F. Caldarola, G. d'Atri, M. Maiolo and G. Pirillo, The sequence of Carboncettus octagons, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 373-380. Doi: 10.1007/978-3-030-39081-532
  12. F. Caldarola, G. d'Atri, P. Mercuri and V. Talamanca, On the arithmetic of Knuth's powers and some computational results about their density, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 381-388. Doi: 10.1007/978-3-030-39081-533
  13. F. Caldarola and M. Maiolo, On the topological convergence of multi-rule sequences of sets and fractal patterns, Soft Computing 24 (2020), 17737-17749. Doi: 10.1007/s00500- 020-05358-w
  14. F. Caldarola, M. Maiolo and V. Solferino, A new approach to the Z-transform through infinite computation, Communications in Nonlinear Science and Numerical Simulation 82 (2020), 105019. Doi: 10.1016/j.cnsns.2019.105019
  15. J.W.S. Cassels, An introduction to Diophantine approximation, Cambridge University Press, London, New York, 1957.
  16. E. Cichon, A short proof of two recently discovered independence results using recursive theoretic methods, Proceedings of the American Mathematical Society 87 (1983), 704-706.
  17. M. Cococcioni, A. Cudazzo, M. Pappalardo and Y.D. Sergeyev, Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology, Communications in Nonlinear Science and Numerical Simulation 84 (2020), 105177. Doi: 10.1016/j.cnsns.2020.105177
  18. J.H. Conway and R.K. Guy, The Book of Numbers, Copernicus Books, 1996.
  19. G. d'Atri, Logic-based consistency checking of XBRL instances, IJACT 3 (2014), 126-131.
  20. A. Falcone, A. Garro, M.S. Mukhametzhanov and Y.D. Sergeyev, Representation of grossone-based arithmetic in simulink for scientific computing, Soft Computing 24 (2020), 17525-17539. Doi: 10.1007/s00500-020-05221-y
  21. R.L. Goodstein, On the restricted ordinal theorem, The Journal of Symbolic Logic 9 (1944), 33-41. https://doi.org/10.2307/2268019
  22. R.L. Goodstein, Transfinite ordinals in recursive number theory, The Journal of Symbolic Logic 12 (1947), 123-129. Doi: 10.2307/2266486
  23. L. Kirby and J. Paris, Accessible independence results for Peano arithmetic, Bulletin of the London Mathematical 14 (1982), 285-293. https://doi.org/10.1112/blms/14.4.285
  24. D.E. Knuth, Mathematics and Computer Science: Coping with finiteness, Science 194 (1976), 1235-1242. Doi: 10.1126/science.194.4271.1235
  25. A. Leonardis, Continued fractions in local fields and nested and nested automorphisms, Ph.D. thesis.
  26. A. Leonardis, G. d'Atri and F. Caldarola, Beyond Knuth's notation for unimaginable numbers within computational number theory, International Electronic Journal of Algebra 31 (2022), 55-73. Doi: 10.24330/ieja.1058413
  27. R. Munafo, Inventing New Operators and Functions, Large Numbers at MROB. Retrieved from website on 19-11-2019.
  28. R. Munafo, Versions of Ackermann's Function, Large Numbers at MROB. Retrieved from website on 19-11-2019.
  29. K.K. Nambiar, Ackermann Functions and Transfinite Ordinals, Applied Mathematics Letters 8 (1995), 51-53. Doi: 10.1016/0893-9659(95)00084-4
  30. J.A. Perez, A new proof of Goodsteinss Theorem, preprint (arXiv: 0904.1957).
  31. Y.D. Sergeyev, Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals, Rend Semin Matematico Univ Polit Torino 68 (2010), 95-113.
  32. Y.D. Sergeyev, D.E. Kvasov and M.S. Mukhametzhanov, On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales, Communications in Nonlinear Science and Numerical Simulation 59 (2018), 319-330. Doi:10.1016/j.cnsns.2017.11.013
  33. H. Steinhaus Mathematical Snapshots, Oxford University Press, 3rd Edition, New York, 1969.
  34. M.M. Zuckerman, Sets and Transfinite Numbers, Macmillan, 1974.