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GOODSTEIN’S GENERALIZED THEOREM: FROM ROOTED

TREE REPRESENTATIONS TO THE HYDRA GAME†

A. LEONARDIS, G. D’ATRI∗ AND E. ZANARDO

Abstract. A hereditary base-b representation, used in the celebrated Good-

stein’s theorem, can easily be converted into a labeled rooted tree. In this
way it is possible to give a more elementary geometric proof of the afore-

mentioned theorem and to establish a more general version, geometrically
proved. This view is very useful for better understanding the underlying

logical problems and the need to use transfinite induction in the proof.

Similar problems will then be considered, such as the so-called “hydra
game”.
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1. Introduction

A positive integer is said to be unimaginable if it exceeds the threshold of one
googol, that is 10100. We know very little about unimaginable numbers, because
it is not only difficult to study them, but also simply to write them down. Several
notations have been devised for this purpose, two of the most well known are
the Knuth’s up-arrow and the Steinhaus-Moser notation. In Section 2 of the
present work, we will begin by recalling their generalized definitions, as well as
a comparison result between them, obtained in [26].

A well-known case in which numbers immediately become unimaginable is
that of Goodstein sequences. Recall that the hereditary base-b notation ex-
presses a positive integer as the sum of powers with base b, and does the same
thing with exponents, so that only coefficients between 1 and b − 1 appear (in
addition to the base b itself). This representation is the subject of the celebrated
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Goodstein theorem (see [21] and Corollary 3.8): replacing the base b with b+ 1
and subtracting 1 from the number thus obtained, we obtain a sequence whose
elements immediately become enormous, unimaginable, but after a finite num-
ber of iterations (unimaginably large) the sequence decreases to zero. Drawing
inspiration from graph theory, it is possible to convert a base-b hereditary repre-
sentation into a labeled rooted tree (see [26]): they will be studied in Section 3
and, in particular, a more general version will be given in Subsection 3.3. Such
representations by generalized rooted trees allow to generalize Goodstein’s theo-
rem in a similar way to what was done in [30], and to give new simpler geometric
proofs. This will be discussed in detail in Subsection 3.4 of this paper, where
we will provide three different sketches of proof of Theorem 3.7. Some explicit
bounds for the length of Goodstein’s sequence in particular cases have also been
obtained in [26], and will be considered at the end of the same section.

Finally, in the last section, we will describe the “hydra game” (so named by
L. Kirby and J. Paris from the mythological Hydra of Lerna, see [23]) using
unlabeled redundant rooted trees and, at the other hand, we will give new geo-
metric points of view of the problem through unredundant labeled rooted trees
introduced in Subsection 3.3.

2. Two notations for “unimaginable numbers”

The original source for Knuth’s up-arrow notation is [24], and for Steinhaus-
Moser notation [33]. In addition to the basic definitions, we recall without
proof, a fundamental result obtained in [26]. For more on Knuth’s powers and
unimaginable numbers see [10, 12] and the references therein.

2.1. Knuth’s up-arrow notation. In this paper we limit ourselves to pro-
viding the following recursive definition for ↑ (A,B, k), while in [26] it has been
generalized to ↑ (A,B, k, C). We set

(1) ↑ (A,B, 0) := AB;
(2) ↑ (A, 0, k) := 1 for k ≥ 1;
(3) ↑ (A,B + 1, k) :=↑ (A, ↑ (A,B, k), k − 1).

The original Knuth’s notation is A ↑k B to mean ↑ (A,B, k) (see [24]). In the
first few cases we have, for instance,

A ↑ B :=↑ (A,B, 1) [Normal exponentiation];
A ↑↑ B :=↑ (A,B, 2) [Tetration];
A ↑↑↑ B :=↑ (A,B, 3) [Pentation];
A ↑k B :=↑ (A,B, k) [k + 2 hyper-operation].

2.2. The generalized Steinhaus-Moser notation. As usual, we denote by
fk the functional power, i.e., the compositum f ◦ f ◦ . . . ◦ f of the function f
with itself k-times.
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Definition 2.1 (Generalized Steinhaus-Moser notation). For any n, k ∈ N, k ≥
3, we define the generalized Steinhaus-Moser notation SMk(n) recursively as
follows:

(1) SM3(n) := nn;
(2) SMk+1(n) := SMn

k (n).

Remark 2.1. For the first three values of k, i.e. k = 3, 4, 5, the number SMk(n)
is originally denoted in [33] by n inscribed in a regular k-gon, where a circle takes
the place of the pentagon. In this way the values of mega 2O and megiston 10O
are defined (see [26, 33]).

Unless otherwise specified, we will use only positive integers in the following.

Theorem 2.2. The Steinhaus-Moser generalized function is comparable to Knuth’s
up-arrow notation as follows:

n ↑m (n+1) ≤ SMm+2(n) ≤ n ↑m−1 (n+m−1) ↑m n < (n+m−1) ↑m (n+1).

More precisely we have

n ↑m (k + 1) ≤ SMk
m+1(n) ≤ n ↑m−1 (n+m− 1) ↑m k.

For the proof of the previous theorem, see [26, Theorem 4.9].

Unimaginably large numbers are obviously not to be confused with infinitely
large, or infinite numbers. The latter pervade every field of mathematics, just
think of the cardinal and ordinal numbers, or the infinites and infinitesimals of
non-standard analysis, etc. Recently, a new type of numerical-computational
infinity called grossone has also been introduced (see [2, 3, 7, 8, 9, 11, 13, 14,
17, 20, 31, 32] and the references inside), whose symbol 1O, a circled 1, is very
similar to the notation for mega and megiston seen above. It also has properties
very similar to those of the smallest infinite ordinal ω, which plays an essential
role in the classical proof of Goodstein’s theorem (see Section 4).

3. The rooted tree representation

3.1. Base equal to 2. Let T be the set characterized by:

– ∅ ∈ T
– A set containing a finite number of elements of T is itself an element
of T (that is, A = {ai ∈ T }i∈I then A ∈ T ), and vice versa any ele-
ment belonging to T contains only finitely many elements of T , without
infinite descending chains.

The set T has also the following properties:

– For any element t ∈ T , a rooted tree can be associated to it: the tree is
built recursively by constructing the branches (subtrees) associated with
the elements that make up t, and then connecting their roots to a new
root which will be that of the tree corresponding to the entire set t. The
tree thus obtained is also said to be unredundant, since there are no two
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identical branches originating from the same node: this is a consequence
of the fact that the elements of a set are all distinct. A branchless root
is associated with the empty set.

– A height function H : T → N is defined by

H(∅) := 0, H(A) := 1 +max
t∈A

H(t).

Note that H(A) is always well defined because there are no infinite
descending chains in T .

– There is also a bijective function f : T
∼=→ N defined recursively by

� f(∅) = 0;
� f(A) =

∑
t∈A 2f(t).

For the sake of clarity, we write the bijectivity of f as a separate statement, and
prove it briefly.

Proposition 3.1. The function f just defined is a bijection from T to the set
of natural numbers N, i.e.:

f(A) = f(B) → A = B.

Proof. We use a complete induction argument on max(H(A), H(B)). After
checking that in the case max(H(A), H(B)) = 0 we must have A = B = ∅, we
suppose that the thesis f(a) = f(b) → a = b is true whenever max(H(a), H(b)) <
max(H(A), H(B)). Consider now the unique base-2 representation of f(A) and
f(B), and note that the 1s correspond to elements a ∈ A, b ∈ B, respectively,
such that f(a) and f(b) return their exact position. Hence, by inductive hy-
pothesis, from f(a) = f(b) we can deduce a = b, and this means that A and B
have the same elements, so they are equal. □

Using the above bijection, we will not distinguish between A and f(A) in the
following. We also set

Mk := max{A ∈ T |H(A) = k},

mk := min{A ∈ T |H(A) = k}.
Note that Mk corresponds to a set A ∈ T which contains all elements t with
height less than k. For instance, we have M0 = 0, M1 = 1, M2 = 20 + 21 =
22−1 = 3, M3 = 20+21+22+23 = 24−1 = 15, M4 = 20+ . . .+215 = 216−1.

On the other hand, mk is easily given by the following recursion: m0 = 0 and
mk = {mk−1}.

Let now {ai}i be the sequence of integers recursively obtained by

(i) a0 = 0 and
(ii) ai+1 = 2ai .

By a trivial induction on k the reader can prove that Mk = ak+1 − 1 and
mk = ak; this implies that the height function H is non-decreasing. We can
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also place each element A ∈ T in a suitable interval, using its height H(A) and
Knuth’s up-arrow notation:

2 ↑↑ (H(A)− 1) ≤ A < 2 ↑↑ H(A).

Example 3.2. For k = 3 we have M3 = {∅, {∅}, {{∅}}, {∅, {∅}}}, i.e. M3

consists of all elements with height less or equal than 2. We can equivalently
say that M3 is the largest set/element having height 3, and we find:

f(M3) = 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15.

The rooted tree associated to M3 is drawn below. In the rightmost picture we
have indicated the integer corresponding to each node/subtree.

Remark 3.1. Adopting the usual notation P(A) for the power set of A (i.e.,
P(A) = {X ⊂ A}), note that we get for all k ≥ 1

(i) Mk = P(Mk−1);
(ii) |Mk| = mk.

The equality in (ii) holds because Mk contains all sets whose image through f
belong to {0, 1, . . . ,mk − 1}.

3.2. Algorithms with unredundant rooted trees. Comparison. To com-
pare two elements A,B ∈ T we can simply consider the symmetric difference
A∆B with the natural order induced by f on its elements: if the greatest element
of A∆B belong to A then A will be greater than B, and vice versa.

Remark 3.2. For the purposes of this paper the order of the elements in the
sets does not matter, that is, the sets are not ordered. If, on the other hand, we
considered the sets in T already ordered according to the natural order, then
comparing two elements and deciding which is the biggest would be trivial.

Successor operation. Let A ∈ T and we want to compute its successor
s(A). If A is equal to some Mk, k ≥ 0, then we have immediately s(A) = mk+1.
On the other hand, if A ̸= Mk ∀k ≥ 0, consider the smallest non-negative integer
nA which does not belong to A. Then nA ̸= A because A ̸= Mk ∀k ≥ 0, and to
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get the successor s(A) of A we have to add nA to A if nA is zero, or replace the
subset {0, . . . , nA − 1} ⊂ A with nA if nA ̸= 0.

Predecessor operation. The computation of the predecessor s−1(A) of
some A ∈ T doesn’t require much strategy either: one simply takes the smallest
digit of the number and replaces it with all lesser digits available. For example,
the tree {7, 5, 4} becomes {7, 5, 3, 2, 1, 0} substituting the digit 4 = {{{∅}}} with
the set of all smaller natural numbers {0, 1, 2, 3}.

Addition. To add A and B we just need to join their elements together. In
the event that some elements appear twice, successors and carries are used in a
natural way.

Multiplication. To multiply A and B one uses the following identity:

A ·B =
∑

(a,b)∈A×B

(c := {a+ b})

which means, in usual terms,(∑
a∈A

2a

)
·

(∑
b∈B

2b

)
=

∑
a∈A, b∈B

2a+b.

3.3. Generalized rooted tree representation. Generalization to bases
greater than 2. The set T seen above is no longer useful if we want to consider
a base greater than 2. For such bases we introduce a more complex notation
where a representation is a pair (b, s) where b is an integer greater or equal than
2 and s is a string in the language {1, 2, . . . , b − 1, “ + ”, “(”, “)”}. We must
interpret a digit followed by a parenthesis by inserting “·b ↑” each time, to get
the complete expression. For example,

b = 3 : 2(1() + 2(1()) + 1(2())) = 2 · 3 ↑ (1 + 2 · 3 ↑ (1) + 1 · 3 ↑ (2)) = 2 · 316.

Remark 3.3. We again remark that order is irrelevant for the addition, and we
could interpret the “plus” symbol as a separator (indeed, it could be completely
removed because the expression would be uniquely interpretable anyways). From
a computational point of view it is instead convenient to order sums by expo-
nents.

We now consider also rooted trees whose edges are labeled with a digit
belonging to {1, . . . , b− 1}.

Definition 3.3. Given a base b > 2, we consider the set Tb of labeled unre-
dundant rooted trees such that:

– the zero-tree consisting of a single node is an element of Tb;
– the joining of any number of different trees in Tb from their roots to a
new root with an edge labeled from 1 to b− 1 gives a new tree in Tb.



Goodstein’s generalized theorem: from rooted tree representations to the hydra game 889

Example 3.4. If we use different colors, blue and red, to better distinguish
the labels 1 and 2, respectively, we obtain the tree shown in Fig. 1 associated
to the bracketed expression below

3 : 2() + 1(1() + 2(1())) = 2 · 30 + 1 · 31·3
0+2·31·3

0

= 2 + 31+6 = 2 + 2187 = 2189.

Figure 1

Also in this case it is possible to define the height of a tree and, consequently,
to find suitable sequences of minimal or maximal elements having a fixed height:

b ↑↑ (H(A)− 1) ≤ A < b ↑↑ H(A).

In fact, the minimum mk = b ↑↑ (H(A) − 1) is obtained with a single path of
digits 1, instead the maximum is the sum of (b−1)×bk where k < b ↑↑ (H(A)−1),
and this gives a geometric progression whose sum is Mk := [b ↑↑ H(A)]− 1.

Generalization to base ω (See [34] for the theory of ordinal numbers).
When we don’t give an upper bound to the digits of an unredundant rooted tree,
we can suppose that the expression obtained is an ordinal with the assumption
b = ω. Thus we can consider the set Tω of unredundant rooted trees with labeled
edges, where the labels are strictly positive integers which in this case are not
bounded by a finite b. This means:

– the zero-tree consisting of a single node is an element of Tω;
– the joining of any number of different trees in Tω from their roots to a

new root with an edge labeled with a strictly positive number gives a
new tree in Tω.

Definition 3.5. We give a total order to the set Tω:
T1 < T2 ↔ b : T1 < b : T2,

where the notation “b :” gives the partial inverse of the inclusion Tb ⊆ Tω (that
is, the interpretation of the tree in base b), which is defined whenever b is an
integer bigger than every label in T1 and T2. This is a good definition because it
is independent on the choice of b, because changing the base to a tree is always
order-preserving.
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This ordered set is known to be isomorphic to ϵ0 := ω ↑↑ ω, i.e. to the
set of ordinals κ < ϵ0, with the same recursive map as before. The ordinal
corresponding to a tree T is given by:∑

S sub-tree of T

l · ωval(S)

where l is the label of the edge connecting the sub-tree S to the root and val(S)
is the numerical value of the sub-tree which can be found recursively.

3.4. Generalized Goodstein’s theorem. Goodstein’s theorem (see [21]) is
very important in logic because it remarks clearly the limits of Peano axioms
(see remark at the end of [30]), which are insufficient to prove it. Transfinite
induction up to the aforementioned ordinal ϵ0 is required, which is equivalent to
the well-ordering of base-ω trees (so we will be able to use them in order to obtain
new geometrical proofs). Goodstein’s theorem has an interesting interpretation
within the topic of rooted tree notation, and here we give a new geometrical
proof of it.

Definition 3.6. Given an increasing sequence of bases {b0 ≤ b1 ≤ . . .} ⊆ Z≥1

and a starting labeled unredundant rooted tree A0 in base b0, we consider the
following geometrical definition of generalized Goodstein’s sequence:

(bk+1, Ak+1) := s−1(bk+1, Ak)

where s−1 is the predecessor function.

Remark 3.4. A tree in base bk can be reinterpreted in a natural way as a
base bk+1 tree as we did for tree ordering, because if labels are smaller than bk
they are also smaller than bk+1. Thus, in the former definition it is well defined
(bk+1, Ak) as the interpretation of Ak in the base bk+1.

Theorem 3.7. Whatever is the sequence of bases and the starting tree A0, ∃k ∈
Z≥1 such that Ak is the zero tree (for all greater k the pairs are undefined).

Corollary 3.8. Goodstein’s original theorem can be obtained as a corollary of
the general version we just stated by setting bk = b + k for some starting base
b0 = b, so that at every step the base is increased by 1.

In the following we give three sketches of proof of Theorem 3.7.

Sketch of proof 1. We consider the set of pairs obtained by the iteration:

{F k(b0, A0) = (bk, Ak)|k ∈ N}.

To each pair of this sequence we consider the corresponding base-ω tree. The
sequence of trees obtained this way is strictly decreasing because the base-ω
substitution is order-preserving, so by infinite descent (thus using the aforemen-
tioned well-ordering of base-ω trees) we know it must stop somewhere, and the
only possibility is the zero-tree.



Goodstein’s generalized theorem: from rooted tree representations to the hydra game 891

Sketch of proof 2. There is also a more constructive proof: the one given in [30]
can be geometrically interpreted as applying complete induction to the height
of the tree (we remark that the well-ordering of the trees, i.e. the possibility to
apply induction, is stronger than Peano axioms). We give a sketch of the proof
with our notations:

– the proof is based on the lemma that when the Goodstein sequence
converges for the starting pair (b, T1), it must converge for all smaller
pairs (b, T2) (T2 < T1);

– one proceeds by induction on k, and Theorem 3.9 proves the case k = 2;
– one considers only the biggest power at each step (by the aforementioned
lemma the other ones will vanish as well), and notices that their expo-
nents form another Goodstein sequence starting from (b,Mk−1): this
proves the assertion.

Sketch of proof 3. A very short proof can be made by proving the following
simple lemma: in a finite number of steps the digit with lowest exponent will
decrease by 1 without any change on the remaining tree. Complete induction
again gives another proof of generalized Goodstein’s theorem. More precisely,
after one step the lowest digit will decrease by 1 and there will pop up a finite
number of other finite lower-exponent digits, which by induction will vanish in
a finite number of steps, so that the lemma is proved. The sum of values of the
digits is finite, thus one by one they will vanish from any starting tree, proving
the theorem. □

We also give a specific bound in the following simpler case (proof can be found
in [26]):

Theorem 3.9. We will denote by x̌ := x−1 the predecessor of a number x. Let
b > 1 and Bk(b) (k < b) be the base that brings the pair (b, b̌(ǩ)+ . . .+ b̌(1)+ b̌())
to the stopping value −1. Then the following equalities hold

B1(b) = 2 · b,

Bk(b) = Bb
k−1(b),

where Bb
k−1 stays for Bk−1 ◦ Bk−1 ◦ . . . ◦ Bk−1, i.e. the b-times composition of

Bk−1 with itself. Let’s see explicitly what this means in the case k = 2 (see [26]
for the meta-algorithm notation):

B2(b) = EXPAND

 b︷︸︸︷
2· b

 = 2bb.

Remark 3.5. The sequence in the theorem is a special case of Löb-Wainer fast
growing hierarchy (see [16]).

Corollary 3.10. Let A be a tree relative to the base b > 2 such that H(A) ≤ 2.
Then Goodstein’s algorithm starting from the pair (b, A) arrives at the stopping
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pair (B,−1) when B = Bb(b). We have moreover

Bb(b) < SMb+1(b) ≤ (2b− 2) ↑b−1 (b+ 1)

where SMk stays for the generalized k-gon Steinhaus-Moser notation (see Defi-
nition 2.1) and the last inequality follows from Theorem 2.2.

From the previous corollary we have that B − b− 1 is an effective bound for
Goodstein’s algorithm to arrive at the zero value, as it needs B−b steps to reach
−1.

4. Redundant trees and the hydra game

We consider now a finite rooted tree where we don’t require branches from the
same node to differ from each other (see [23]). This will represent an “hydra”,
following the lore of Herculean myth.

4.1. The hydra game. The hydra, mythical creature classically defeated by
Hercules, has stimulated mathematicians to analyze the battle from a schematic
point of view. The monster is represented by a redundant rooted (unlabeled)
tree, with the following interpretation:

– the root of the tree represents the body of the hydra;
– ending segments (leaves) of the tree are the heads of the hydra;
– points (nodes) of the tree are the ramifications of the hydra’s head sys-
tem;

– at each turn (k = 1, 2, 3, . . .) Hercules can cut a head, but there is a
function f : Z≥1 → Z≥1 so that the branch starting from the parent
node of the head basis (unless the head is attached to the body directly
so that this node does not exist) is copied f(k) times (usually one takes
f(k) = 2 or f(k) = k).

Figure 2. An example of hydra game: 8 more moves are
needed to remove the remaining branches.
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The game ends when Hercules has cut all the heads and only the body of
the hydra is left in the battle (see Fig. 2). Using the ordinal theory mentioned
above mathematicians have proven that:

Theorem 4.1. Given any starting tree, the hydra game is won with any strategy
in a finite number of steps (although this number may be unimaginably large).

4.2. Connection with unredundant tree representation. An hydra tree
can be represented also as an unredundant base ω tree in the following way:
from each node one superposes the identical branches and then labels the unique
remaining segment with the number of the original branches (see Fig. 3).

The resulting tree gives a simple strategy to solve the game which does not
require more than basic induction: removing the same leaf from all identical
trees to which it is attached means removing one segment from the base ω tree
and increasing the label of the parent segment by a finite value (see for example
Fig. 4). This means at each iteration of this process the number of segments of
the trees is decreased by one, so that the tree will eventually be left with only
the root.

Figure 3. An example of hydra tree both in labeled and re-
dundant variants.

Figure 4. Simple strategy to solve the Hydra Game.
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