DOI QR코드

DOI QR Code

Applications of MALDI-TOF Mass Spectrometry in Clinical Microbiology

  • Shin, Kyeong Seob (Department of Laboratory M edicine, Chungbuk National University College of Medicine) ;
  • Yum, Jonghwa (Department of Clinical Laboratory Science, Dongeui University)
  • Received : 2022.08.24
  • Accepted : 2022.09.14
  • Published : 2022.09.30

Abstract

Over the past few decades, few technologies have had a greater impact on clinical microbiology laboratories than matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS). The MALDI-TOF MS is a fast, accurate, and low-cost and efficient method of microbial identification. This technology generates characteristic mass spectral fingerprints that is a unique signature for each microorganism, making it an ideal method for accurate identification at the genus and species levels of both bacterial and fastidious microorganism such as anaerobes, mycobacterium and fungi etc. In addition, MALDI-TOF MS has been successfully used in microbial subtyping and susceptibility tests such as determination of resistance genes. In this study, the authors summarized the application of MALDI-TOF MS in clinical microbiology and clinical research and explored the future of MALDI-TOF MS.

Keywords

References

  1. Anhalt JP, Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem. 1975. 47: 219-225. https://doi.org/10.1021/ac60352a007
  2. Arnold RJ, Karty JA, Ellinton AD, Reilly JP. Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal Chem. 1999. 71: 1990-1996. https://doi.org/10.1021/ac981196c
  3. Berrazeg M, Diene SM, Drissi M, Kempf M, Richet H, Landraud L, et al. Biotyping of multidrug-resistant Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. PLoS ONE. 2013. 8: e61428. https://doi.org/10.1371/journal.pone.0061428
  4. Biswas S, Gouriet F, et al. Molecular typing of Bacteria/fungi using MALDI-TOF MS. In: Kostrzewa M, Schubert S editors. MALDI-TOF mass spectrometry in microbiology. Norfolk, UK: Caister Academic Press. 2016. p79-92.
  5. Bizzini A, Jaton K, Romo D, Bille J, Prod'homa G, Greub G. Mtrix-assisted laser desorption/ionization with time-of-flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol. 2011. 49: 693-696. https://doi.org/10.1128/JCM.01463-10
  6. Blondiaux N, Gillot O, Courcol RJ. MALDI-TOF mass spectrometry to identify clinical bacterial isolates: evaluation in teaching hospital in Lille. Pathol Biol. 2010. 58: 55-57. https://doi.org/10.1016/j.patbio.2009.07.020
  7. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011. 49: 3321-3324. https://doi.org/10.1128/JCM.00287-11
  8. Carbonnelle E, Beretti JL, Cottyn S, Quesne G, Berche P, Nassif X, et al. Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. J Clin Microbiol. 2007. 45: 2156-2161. https://doi.org/10.1128/JCM.02405-06
  9. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, et al. Comparison of two matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol. 2010. 48: 1169-1175. https://doi.org/10.1128/JCM.01881-09
  10. Clark CG, Kruczkiewicz P, Guan C, McCorrister SJ, Chong P, Wylie J, et al. Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes. J Microbiol Methods. 2013. 94: 180-191. https://doi.org/10.1016/j.mimet.2013.06.020
  11. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996. 14: 1584-1586. https://doi.org/10.1038/nbt1196-1584
  12. Clinical and Laboratory Standards Institute. Methods for the identification of cultured microorganisms using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: M58-1st ed. CLSI, Wayne, PA, USA, 2018.
  13. Croxatto A, Prod'hom G, Greub G. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012. 36: 380-407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
  14. Demirev PA, Ho YP, Ryzhov V, Fenselau C. Microorganism identification by mass spectrometry and protein database searches. Anal Chem. 1999. 71: 2732-2738. https://doi.org/10.1021/ac990165u
  15. Dieckmann R, Helmuth R, Erhard M, Malorny B. Rapid classification and identification of salmonellae at the species and subspecies level using whole-cell MALDI-TOF mass spectrometry. Appl Environ Microbiol. 2008. 74: 7767-778. https://doi.org/10.1128/AEM.01402-08
  16. Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus aureus and determination of its methicillin-resistance by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Anal Chem. 2002. 74: 5487-5491. https://doi.org/10.1021/ac020109k
  17. Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB. Rapid discrimination between methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol. 2000. 49: 295-300. https://doi.org/10.1099/0022-1317-49-3-295
  18. Fenn JB, Mann M, Wong SF, Whithouse CM. Electrospray ionization for mass spectrometry of large biomolecule. 1989. 6: 64-71.
  19. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrum Rev. 2001. 20: 157-171. https://doi.org/10.1002/mas.10004
  20. Ferreira L, Sanchez-Juanes F, Munoz-Bellido JL, Gonzalez-Buitrago JM. Rapid method for direct identification of bacterial in urine and blood culture samples by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry: intact cell vs extraction method. Clin Microbiol Infect. 2010. 17: 1007-1012.
  21. Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, et al. Use of matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012. 50: 2918-2931. https://doi.org/10.1128/JCM.01000-12
  22. Haag AM, Tayler SN, Johnston KH, Cole RB. Rapid identification and speciation of Haemophilus bacteria by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. J Mass Spectrom. 1998. 33: 750-756. https://doi.org/10.1002/(SICI)1096-9888(199808)33:8<750::AID-JMS680>3.0.CO;2-1
  23. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Person CC, Voorhees KJ, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996. 10: 1227-1232. https://doi.org/10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6
  24. Hrabak J, Chudackova E, Papagiannitsis CC. Detection of carbapenemase in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014. 20: 839-853. https://doi.org/10.1111/1469-0691.12678
  25. Hrabak J, Dolejska M, et al. MALDI-TOF MS for determination of resistance to antibiotics. In: Kostrzewa M, Schubert S editors. MALDI-TOF mass spectrometry in microbiology. Norfolk, UK: Caister Academic Press. 2016, p93-108.
  26. Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, et al., Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemase by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. J Clin Microbiol. 2012. 50: 2441-2443. https://doi.org/10.1128/JCM.01002-12
  27. Jo SJ, Park KG, Han K, Park DJ, Park YJ. Direct identification and antimicrobial susceptibility testing of bacteria from positive blood culture bottles by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry and the Vitek 2 system. Ann Lab Med. 2016. 36: 117-123. https://doi.org/10.3343/alm.2016.36.2.117
  28. Krause E, Wenschuh H, Jungblut RP. The dominance of arginine-containing peptide in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem. 1999. 71: 4160-4165. https://doi.org/10.1021/ac990298f
  29. Kuhns M, Zautner AE, Rabsch W, Zimmermann O, Weig M, Bader O, et al. Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS ONE. 2012. 7: e40004. https://doi.org/10.1371/journal.pone.0040004
  30. Lartigue MF, Hery-Arnaud G, Haguenoer E, Domelier AS, Schmit PO, Mee-Marquet N, et al. Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. J Clin Microbiol. 2009. 47: 2284-2287. https://doi.org/10.1128/JCM.00175-09
  31. La Scola, Raoult D. Direct identification bacteria in positive blood culture bottles by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. PLoS ONE. 2009. 4: e8041. https://doi.org/10.1371/journal.pone.0008041
  32. Lee HS, Shin JH, Choi JM, Won EJ, Kee SJ, Kim SH, et al. Comparison of the Bruker Biotyper and VITEK MS matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry systems using a formic acid extraction method to identify common and uncommon yeast isolates. Ann Lab Med. 2017. 37: 223-230. https://doi.org/10.3343/alm.2017.37.3.223
  33. Lee W, Kim M, Yong D, Jeong SH, Lee K, Chong Y. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption/ionization with time-of-flight MS system for identification of anaerobic bacteria. Ann Lab Med. 2015. 35: 69-75. https://doi.org/10.3343/alm.2015.35.1.69
  34. Marklein G, Josten M, Klanke U, et al. Matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009. 47: 2912-2917. https://doi.org/10.1128/JCM.00389-09
  35. M'Koma AE. Diagnosis of inflammatory bowel disease; potential role of molecular biometrics. World J Gastrointest Surg. 2014. 6: 208-219. https://doi.org/10.4240/wjgs.v6.i11.208
  36. Moore JI, Caprioli RM, Skaar EP. Advanced mass spectrometry technologies for the study of microbial pathogenesis. Curr Opin Microbiol. 2014. 19: 45-51. https://doi.org/10.1016/j.mib.2014.05.023
  37. Moura H, Woolfitt AR, Carvalho MG, Pavlopoulos A, Teixeira LM, Satten GA, et al. MALDI-TOF mass spectrometry as a tool for differentiation of invasive and noninvasive Streptococcus pyogenes isolates. FEMS Immunol Med Microbiol. 2008. 53: 333-342. https://doi.org/10.1111/j.1574-695X.2008.00428.x
  38. Prod'hom G, Bizzin A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010. 48: 1481-1483. https://doi.org/10.1128/JCM.01780-09
  39. Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001. 73: 746-750. https://doi.org/10.1021/ac0008791
  40. Schubert S, Kostrzewa M. Future trends and perspectives of MALDI-TOF MS in the microbiology laboratory. In: Kostrzewa M, Schubert S editors. MALDI-TOF mass spectrometry in microbiology. Norfolk, UK: Caister Academic Press. 2016. p157-160.
  41. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Clin Infect Dis. 2009. 49: 543-551. https://doi.org/10.1086/600885
  42. Sparbier K, Schbert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol. 2012. 50: 927-937. https://doi.org/10.1128/JCM.05737-11
  43. Sparbier K, Wenzel T, Dihazi H, Blaschke S, Muller GA, Deelder A, et al. Immuno-MALDI-TOF MS: new perspectives for clinical applications of mass spectrometry. Proteomics. 2009. 9: 1442-1450. https://doi.org/10.1002/pmic.200800616
  44. Spinali S, van BA, Goering RV, Girard V, Welker M, Van NM, et al. Microbial typing by MALDI-TOF MS:Do we need guideline for data interpretation? J Clin Microbiol. 2015. 53: 760-765. https://doi.org/10.1128/JCM.01635-14
  45. Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100,000 by laser ionization time of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988. 2: 151-153. https://doi.org/10.1002/rcm.1290020802
  46. Vaidyanathan S, Winder CL, Wade SC, Kell DB, Goodacre R. Sample preparation in matrix-assisted laser desorption/ionization mass spectrometry of whole bacterial cells and the detection of high mass (>20 kDa) proteins. Commun Mass Spectrom. 2002. 16: 1276-1286. https://doi.org/10.1002/rcm.713
  47. van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. 2010. 48: 900-907. https://doi.org/10.1128/JCM.02071-09
  48. Walch A, Rauser S, Deininger SO, Hofler H. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol. 2008. 130: 421-434. https://doi.org/10.1007/s00418-008-0469-9
  49. Williams TL, Andrzejewski D, Lay JO, Musser SM. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Specrom. 2003. 14: 342-351. https://doi.org/10.1016/S1044-0305(03)00065-5
  50. Williamson YM, Moura H, Woolfitt AR, Pirkle JL, Barr JR, Carvalho MG, et al. Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Appl Environ Microbiol. 2008. 74: 5891-5897. https://doi.org/10.1128/AEM.00791-08
  51. Wolters M, Rohde H, Maier T, Balmar-Campos C, Franke G, Scherpe S, et al. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011. 301: 64-68. https://doi.org/10.1016/j.ijmm.2010.06.002
  52. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, et al. Primer on agar-based microbial imaging mass spectrometry. J Bacteriol. 2012. 194: 6023-6028. https://doi.org/10.1128/JB.00823-12