Acknowledgement
본 연구는 과학기술정보통신부의 기본연구지원사업(NRF-2022R1F1A1074593), 2022년도 광주과학기술원의 GRI(GIST연구원) 사업, 2022년 해양수산부 재원으로 해양수산과학기술진흥원(서태평양 해저산고코발트 망간각 자원개발 유망광구 선정, 과제번호 20220509)의 지원을 받아 수행되었습니다. 방사광가속기를 이용한 고압 회절실험은 포항가속기연구소의 지원으로 수행되었으며, 도움을 주신 이현휘 박사님께 감사의 말씀을 드립니다.
References
- Abers, G.A., van Keken, P.E., Kneller, E.A., Ferris, A. and Stachnik, J.C., 2006, The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth and Planetary Science Letters, 241(3), 387-397. https://doi.org/10.1016/j.epsl.2005.11.055
- Akizuki, M. and Konno, H., 1985, Order-disorder structure and the internal texture of stilbite. American Mineralogist, 70(7-8), 814-821.
- Akizuki, M., Kudoh, Y. and Satoh, Y., 1993, Crystal structure of the orthorhombic [001] growth sector of stilbite. European Journal of Mineralogy, 5(5), 839-843. https://doi.org/10.1127/ejm/5/5/0839
- Angel, R.J., Alvaro, M., and Gonzalez-Platas, J., 2014, EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift fur Kristallographie - Crystalline Materials, 229(5), 405-419. https://doi.org/10.1515/zkri-2013-1711
- Birch, F., 1947, Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. https://doi.org/10.1103/PhysRev.71.809
- Bridgman, P.W., 1912, Water, in the Liquid and Five Solid Forms, under Pressure. Proceedings of the American Academy of Arts and Sciences, 47(13), 441-558.
- Cruciani, G., Artioli, G., Gualtieri, A., Stahl, K. and Hanson, J.C., 1997, Dehydration dynamics of stilbite using synchrotron X-ray powder diffraction. American Mineralogist, 82(7-8), 729-739. https://doi.org/10.2138/am-1997-7-810
- Hermann, J. and Spandler, C.J., 2007, Sediment Melts at Sub-arc Depths: an Experimental Study. Journal of Petrology, 49(4), 717-740. https://doi.org/10.1093/petrology/egm073
- Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.-P., Cynn, H., Vogt, T., Kao, C.-C. and Mao, H.-K., 2017, A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geoscience, 10(12), 947-953. https://doi.org/10.1038/s41561-017-0008-1
- Karato, S.-I. and Jung, H., 2003, Effects of pressure on hightemperature dislocation creep in olivine. Philosophical Magazine, 83(3), 401-414. https://doi.org/10.1080/0141861021000025829
- Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23(3), 447-452. https://doi.org/10.1016/0025-5408(88)90019-0
- Lebow, S.T., Foster, D.O. and Lebow, P.K., 1999, Release of copper, chromium, and arsenic from treated southern pine exposed in seawater and freshwater. Forest Products Journal, 49, 80-89.
- Mao, H.K., Xu, J. and Bell, P.M., 1986, Calibration of the Ruby Pressure Gauge to 800-Kbar Under Quasi-hydrostatic Conditions. Journal of Geophysical Research-Solid Earth and Planets, 91(B5), 4673-4676. https://doi.org/10.1029/JB091iB05p04673
- Mei, S. and Kohlstedt, D.L., 2000a, Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. Journal of Geophysical Research: Solid Earth, 105(B9), 21457-21469. https://doi.org/10.1029/2000JB900179
- Mei, S. and Kohlstedt, D.L., 2000b, Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. Journal of Geophysical Research: Solid Earth, 105(B9), 21471-21481. https://doi.org/10.1029/2000JB900180
- Murnaghan, F.D., 1944, The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. https://doi.org/10.1073/pnas.30.9.244
- Prescher, C., and Prakapenka, V.B., 2015, DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223-230. https://doi.org/10.1080/08957959.2015.1059835
- Ryan, J.G., and Chauvel, C., 2014, 3.13 - The SubductionZone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. In H.D. Holland, and K.K. Turekian, Eds. Treatise on Geochemistry (Second Edition), p. 479-508. Elsevier, Oxford.
- Seryotkin, Y.V., Dementiev, S.N. and Likhacheva, A.Y., 2021, Crystal-fluid interaction: the evolution of stilbite structure at high pressure. Physics and Chemistry of Minerals, 48, 1-11. https://doi.org/10.1007/s00269-020-01125-3
- Sharp, J.D. and Byrne, R.H., 2019, Carbonate ion concentrations in seawater: Spectrophotometric determination at ambient temperatures and evaluation of propagated calculation uncertainties. Marine Chemistry, 209, 70-80. https://doi.org/10.1016/j.marchem.2018.12.001
- Slaughter, M., 1970, Crystal structure of stilbite. American Mineralogist: Journal of Earth and Planetary Materials, 55(3-4_Part_1), 387-397.
- Toby, B.H., 2001, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34(2), 210-213. https://doi.org/10.1107/S0021889801002242
- Yun, S., Hwang, H., Hwang, G., Kim, Y., Blom, D., Vogt, T., Post, J.E., Jeon, T.-Y., Shin, T.J., Zhang, D.-Z., Kagi, H. and Lee, Y., 2022, Super-hydration and reduction of manganese oxide minerals at shallow terrestrial depths. Nature Communications, 13(1), 1942. https://doi.org/10.1038/s41467-022-29328-y
- Zheng, Y.-F. and Hermann, J., 2014, Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66(1), 93. https://doi.org/10.1186/1880-5981-66-93