DOI QR코드

DOI QR Code

Application Utility Analysis of Series-cascaded Ring Resonators Based on SOI Slot Optical Waveguides in Integrated Optical Biochemical Sensor

SOI 슬롯 광도파로 기반 캐스케이드 링 공진기 바이오·케미컬 집적광학 센서의 효용성 해석

  • Jang, Jaesik (Department of Electronic & Computer Engineering, Graduate School, Hongik University) ;
  • Jung, Hongsik (Department of Electronic & Computer Engineering, Graduate School, Hongik University)
  • 장재식 (홍익대학교 대학원 전자전산공학과) ;
  • 정홍식 (홍익대학교 대학원 전자전산공학과)
  • Received : 2022.09.19
  • Accepted : 2022.09.26
  • Published : 2022.09.30

Abstract

This study investigated via computational analysis the application utility of series-cascaded ring resonators based on silicon-on-insulator (SOI) slot optical waveguides in integrated optical biochemical sensors. The radii of the two rings in the series-cascaded ring resonators were 59.4 ㎛ and 77.6 ㎛ respectively, and the coupling distance was 0.5 ㎛. The series-cascaded ring resonators were computationally analyzed using FIMMProp and PICWave numerical software. The free spectral range (FSR), full width at half maximum (FWHM), sensitivity, and quality-factor (Q-factor) of the series-cascaded ring resonators were 12.2 nm, 0.134 nm, 4100 nm/RIU, and 11580, respectively, and the measurement range was calculated to be slightly smaller than 3×10-3 RIU. Although the measurement range was smaller than that of the single ring resonator, upon considering other characteristic parameters, the series-cascaded ring resonators are found to be more effective as integrated sensors than single ring resonators.

Keywords

Acknowledgement

이 논문은 한국연구재단 이공학개인기초연구(2018-R1D1A1B07049908) 연구비 지원으로 수행되었습니다.

References

  1. Y. Liu, Y. Li, M. Li, and J. J. He, "High-sensitivity and wide-range optical sensor based on three cascaded ring resonators", Opt. Express., Vol. 25, No. 2, pp. 972-978, 2017. https://doi.org/10.1364/OE.25.000972
  2. C. A. Barrios, "Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor", Proc. SPIE 7356. Optical sensors 2009., pp. 66-69, Prague, Czech Republic, 2009.
  3. P. Sanati, S. S. Hashemi, M. Bahadoran, A. A. Babadi, and E. Akbari, "Detection of Escherichia coli K12 in Water Using Slot Waveguide in Cascaded Ring Resonator", Silicon., Vol. 14, No. 3, pp. 851-857, 2021.
  4. Y. Zhao, H. Zhao, R. Lv and J. Zhao, "Review of optical fiber Mach-Zehnder interferometers with micro-cavity fabricated by femtosecond laser sensing applications", Opt. Lasers. Eng., Vol. 117, pp, 7-20, 2019. https://doi.org/10.1016/j.optlaseng.2018.12.013
  5. C. A. Barrios, B. Sanchez, K. B. Gylfason, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel, "Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform", Opt. Express., Vol. 15, No. 11, pp. 6846-6856, 2007. https://doi.org/10.1364/OE.15.006846
  6. X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, "Silicon photonics slot waveguide Bragg gratings and resonators", Opt. Express., Vol. 21, No. 16, pp. 19029-19039, 2013. https://doi.org/10.1364/OE.21.019029
  7. Y. Chen and H. Ming, "Review of surface plasmon resonance and localized surface plasmon resonance sensor", Photonic. Sens., Vol. 2, No. 1, pp. 37-49, 2012. https://doi.org/10.1007/s13320-011-0051-2
  8. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure", Opt. Lett., Vol. 29, No. 11, pp. 1209-1211, 2004. https://doi.org/10.1364/OL.29.001209
  9. K. Y. You, Emerging Waveguide Technology, IntechOpen, London, pp. 187-207, 2018.
  10. I. Kiyay, A. Aydinli, and N. Dagli, "High-Q silicon-in-insulator optical rib waveguide racetrack resonators", Opt. Express., Vol. 13, No. 6, pp. 1900-1905, 2005. https://doi.org/10.1364/OPEX.13.001900
  11. R. Bernini, S. Campopiano, L. Zeni and P. M. Sarro, "ARROW optical waveguides based sensors", Sens. Actuators. B. Chem., Vol. 100, No. 1-2, pp. 143-146, 2004. https://doi.org/10.1016/j.snb.2003.12.035
  12. F. Prieto, A. Llobera, D. nez, C. nguez, A. Calle, and L. M. Lechuga, "Design and Analysis of Silicon Antiresonant Reflecting Optical Waveguide for Evanscent Field Sensor", J. Lightwave. Technol., Vol. 18, No. 7, pp. 966-972, 2000. https://doi.org/10.1109/50.850742
  13. W. Zhang, S. Serna, X. L. Roux, L. Vivien and E. Cassan, "Silicon slot waveguide ring resonators: Can we target high Q factors?", 17th International Conference On Transparent Optical Networks. (ICTON), pp. 1-2, Budapest, Hungary, 2015.
  14. J. S. Jang and H. S. Jung, "Sensitivity Analysis for Specification of Silicon-On-Insulator (SOI) Slot Optical Waveguide-based Single and Add-drop Channel Ring-resonant Biochemical Integrated Optical Sensors", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 107-114, 2022. https://doi.org/10.46670/JSST.2022.31.2.107
  15. D. G. Rabus, Integrated Ring Resonators The compendium., Springer, Heidelberg, pp. 3-11, 2007.
  16. M. Seifouri, V. Fallahi and S. Olyaee, "Ultra-high-Q optical filter based on photonic crystal ring resonator", Photon. Netw. Commun., Vol. 35, No. 2, pp. 225-230, 2018. https://doi.org/10.1007/s11107-017-0732-x
  17. K. Suzuki, G. Cong, K. Tanizawa, S. H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, "Ultra-high-extinction-ratio 2×2 silicon optical switch with variable splitter", Opt. Express., Vol. 23, No. 7, pp. 9086-9092, 2015. https://doi.org/10.1364/OE.23.009086
  18. B. Liu, A. Shakouri, and J. E. Bowers, "Passive microring-resonator-coupled lasers", Appl. Phys. Lett., Vol. 79, No. 22, pp. 3561-3563, 2001. https://doi.org/10.1063/1.1420585
  19. S. Matsuo and T. Segawa, "Microring-Resonator-Based Widely Tunable Lasers", IEEE. J. Sel. Top. Quantum. Electron., Vol. 15, No. 3, pp. 545-554, 2009. https://doi.org/10.1109/JSTQE.2009.2014248
  20. T. Baba, S. Akiyama, M. Imai, N. Hiroyama, H. Takahashi, Y. Noguchi, T. Horikawa and T. Usiki, "50-Gb/s ring-resonator-based silicon modulator", Opt. Express., Vol. 21, No. 10, pp. 11869-11876, 2013. https://doi.org/10.1364/OE.21.011869
  21. T. Claes, W. Bogaerts and P. Bienstman, "Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit", Opt. Express., Vol. 18, No. 22, pp. 22747-22761, 2010. https://doi.org/10.1364/OE.18.022747
  22. A. D. Gomes, M. S. Ferreira, J. Bierlich, J. Kobelke, M. Rothhardt, H. Bartelt, and O. Frazao, "Optical Harmonic Vernier Effect: A New Tool for High Performance Interferometric Fiber Sensors", Sensors., Vol. 19, No. 24, p. 5431, 2019. https://doi.org/10.3390/s19245431
  23. V. Zamora, P. Lutzow, M. Weiland, and D. Pergande, "Investigation of cascaded SiN microring resonator at 1.3㎛ and 1.5㎛", Opt. Express., Vol. 21, No. 23, pp. 27550-27557, 2013. https://doi.org/10.1364/OE.21.027550
  24. H. S. Jung, "Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors", J. Sens. Sci. Technol., Vol. 30, No. 3, pp. 131-138, 2021. https://doi.org/10.46670/JSST.2021.30.3.131