과제정보
본 연구는 중소벤처기업부의 연구비지원(S3147433)에 의해 수행되었습니다.
참고문헌
- Liu, Yang et al., "A survey and performance evaluation of deep learning methods for small object detection," Expert Systems with Applications, vol. 172, no. 15, pp. 114602-1-14, 2021. https://doi.org/10.1016/j.eswa.2021.114602
- S. S. AbbasZaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, "Velasco-Montero, Delia, et al. "A survey of modern deep learning based object detection models." Real-Time Image and Video Processing, vol. 10670, no. 30, pp. 103514-1-9, 2022.
- S. Jha, C. Seo, F. Yang, and G. P. Joshi, "Real time object detection and tracking system for video surveillance system." Multimedia Tools and Applications, vol. 80, no. 3, pp. 3981-3996, 2021. https://doi.org/10.1007/s11042-020-09749-x
- R. Chandrakar, R. Raja, R. Miri, U. Sinha, A. K. S. Kushwaha, and H. Raja, "Enhanced the moving object detection and object tracking for traffic surveillance using RBF-FDLNN and CBF algorithm." Expert Systems with Applications, vol. 191, pp. 116306-1-15, 2022. https://doi.org/10.1016/j.eswa.2021.116306
- E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, "A survey on 3d object detection methods for autonomous driving applications." IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782-3795, 2019 https://doi.org/10.1109/tits.2019.2892405
- E. H. Nguyen, H. Yang, R. Deng, Y. Lu, Z. Zhu, J. T. Roland, and Y. Huo, "Circle Representation for Medical Object Detection." IEEE transactions on medical imaging, vol. 41, no. 3, 746-754. 2021.
- D. Pestana, et al. "A full featured configurable accelerator for object detection with YOLO." IEEE Access, vol. 9, pp. 75864-75877, 2021. https://doi.org/10.1109/ACCESS.2021.3081818
- R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 580-587, Jun. 2014.
- R. Girshick, "Fast R-CNN," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), pp. 1440-1448, Dec. 2015.
- J. Dai, Y. Li, K. He, and J. Sun, "R-FCN: Object detection via region based fully convolutional networks," in Proc. 30th Int. Conf. Neural Inf. Process. Syst. (NIPS). Red Hook, NY, USA: Curran Associates, pp. 379-387, 2016.
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017. https://doi.org/10.1109/TPAMI.2016.2577031
- K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, "Mask R-CNN," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), pp. 2980-2988, Oct. 2017.
- W. Liu, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Cham, pp. 21-37, 2016.
- P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma. "A Review of Yolo Algorithm Developments." Procedia Computer Science, pp. 1066-1073, 2022.
- J. Redmon, and A. Farhadi, "YOLO9000: better, faster, stronger." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271, 2017.
- Ali Farhadi and Joseph Redmon. "Yolov3: An incremental improvement." Computer Vision and Pattern Recognition, vol. 1804, pp. 1-6, 2018.
- Bochkovskiy, Alexey, Chien-Yao Wang, and HongYuan Mark Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934, 2020.
- C. Y. Wang, A. Bochkovskiy, and H. Y. H. Liao. "Scaled-yolov4: Scaling cross stage partial network." In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition. pp. 13029-13038, 2021.
- W. Wu, et al. "Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image." PloS one, vol. 16, no. 10, pp. e0259283. 2021. https://doi.org/10.1371/journal.pone.0259283
- https://github.com/meituan/YOLOv6
- C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696.
- C. S. Park, "Performance Analysis of DNN inference using OpenCV Built in CPU and GPU Functions." Journal of the Semiconductor & Display Technology, vol. 21. no. 1. pp. 75-78, 2022.