DOI QR코드

DOI QR Code

Cross-resistance of Colletotrichum acutatum s. lat. to Strobilurin Fungicides and Inhibitory Effect of Fungicides with Other Mechanisms on C. acutatum s. lat. Resistant to Pyraclostrobin

Strobilurin계 살균제에 대한 고추탄저병균의 교차저항성과 Pyraclostrobin 저항성균에 대한 다른 기작 살균제의 억제 효과

  • Park, Subin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Heung Tae (Department of Plant Medicine, Chungbuk National University)
  • 박수빈 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김흥태 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2022.09.01
  • Accepted : 2022.09.18
  • Published : 2022.09.30

Abstract

Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to pylaclostrobin were used to investigate the cross-resistance with fungicides belonging to the strobilurins and the characteristics of fungicidal controlling activities with different mechanisms against the isolate resistant to the fungicide. The resistant isolate of 20CDJ6 also showed the resistance to azoxystrobin, trifloxystrobin, and kresoxim-methyl, suggesting that there is a cross-resistance relationship. All fungicides with different action mechanisms inhibited mycelial growth of both susceptible and resistant isolates of C. acutatum s. lat., but their disease control effects in fruits were different according to the fungicides. The disease control effect of isopyrazam against 20JDS8 and 20CDJ6 was very low, and fluazinam showed a control effect of 91.9% and 88.1% against 20JDS8 and 20CDJ6 only when it was treated before inoculation by spraying spore suspensions on pepper fruits without wounds. Tebuconazole and prochloraz effectively inhibited not only the mycelial growth of 20JDS8 and 20CDJ6 on potato dextrose agar medium, but also disease incidence in red pepper fruits. As a result of this study, C. acutatum s. lat. 20CDJ6 resistant to pyraclostrobin showed cross-resistance with other strobilurin fungicides. In addition, we think that fluazinam, tebuconazole, and prochloraz can be recommended as alternative fungicides for the control of red-pepper pyranthracnose pathogens resistant pyraclostrobin. However, fluazinam can be effective only if it is treated protectively before the occurrence of the disease.

Pyraclostrobin에 대해서 감수성균인 Colletotrichum acutatum s. lat. 20JDS8과 저항성인 20CDJ6을 사용하여, strobilurin계에 속하는 살균제와의 교차 저항성 여부와, 작용기작이 다른 살균제의 저항성균에 대한 작용 특성을 조사하였다. Pyraclostrobin 저항성 20CDJ6은 strobilurin계인 azoxystrobin, trifloxystrobin, kresoxim-methyl에 대해서도 저항성을 보여, 교차 저항성 관계가 있음을 알 수 있었다. 작용기작이 다른 모든 살균제는 감수성과 저항성균 모두의 균사 생장을 억제하였지만, 열매에서 병 방제 효과는 서로 달랐다. Isopyrazam의 20JDS8과 20CDJ6에 대한 병 방제효과는 매우 낮았으며, fluazinam은 열매에 상처를 내지 않고 예방적으로 처리하였을 때만 20JDS8과 20CDJ6에 대해서 91.9%와 88.1%의 방제 효과를 보였다. Tebuconazole과 prochloraz는 PDA 배지 상에서 20JDS8과 20CDJ6의 균사생장뿐만 아니라 고추 열매에서 병 발생도 효과적으로 억제하였다. 본 연구의 결과, pyraclostrobin에 대해서 저항성인 고추탄저병균은 strobilurin계의 다른 살균제와 교차 저항성을 보였다. 또한 pyraclostrobin 저항성균의 방제를 위한 대체 살균제로 작용기작이 다른 fluazinam, tebuconazole, prochloraz 등을 추천할 수 있을 것으로 생각한다. 다만, fluazinam은 병 발생 이전에 예방적으로 처리하여야만 효과를 얻을 수 있다.

Keywords

Acknowledgement

This work was supported by the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through the Crop Viruses and Pests Response Industry Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA; Grant No. 320042-5).

References

  1. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest. Manag. Sci. 58: 649-662. https://doi.org/10.1002/ps.520
  2. Collina, M., Landi, L., Guerrini, P., Branzanti, M. B. and Brunelli, A. 2005. QoI resistance of Plasmopara viticola in Italy: biological and quantitative real-time PCR approaches. In: Modern Fungicides and Antifungal Compounds, IV, eds. by H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell and H. Lyr, pp. 81-88. BCPC, Alton, Hants, UK.
  3. Gisi, U., Sierotzki, H., Cook, A. and McCaffery, A. 2002. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest. Manag. Sci. 58: 859-867. https://doi.org/10.1002/ps.565
  4. Harp, T. L., Godwin, J. R., Scalliet, G., Walter, H., Stalker, A. D., Bartlett, D. W. et al. 2011. Isopyrazam, a new generation cereal fungicide. Asp. Appl. Biol. 106: 113-120.
  5. Heaney, S. P., Hall, A. A., Davies, S. A. and Olaya, G. 2000. Resistance to fungicide in the QoI-STAR cross-resistance group: current perspective. In: Proceeding of the British Crop Protection Conference: Pest and Disease, Vol. 2, pp. 755-762. British Crop Protection Council, Franham, Surrey, UK.
  6. Isa, D. A., Ahn, S., Park, S. and Kim, H. T. 2020. Monitoring of resistance of Colletotrichum acutatum causing pepper anthracnose to pyraclostrobin using quantitative sequencing and agar dilution method. In: The 2020 KSPP Conference & Special Symposium, The International Year of Plant Health in 2020, p. 83. Korean Society of Platn Pathology, Seoul, Korea.
  7. Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T. et al. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91: 1166-1171. https://doi.org/10.1094/PHYTO.2001.91.12.1166
  8. Kim, Y.-S., Dixon, E. W., Vincelli, P. and Farman, M. L. 2003. Field resistance to strobilurin (QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. Phytopathology 93: 891-900. https://doi.org/10.1094/PHYTO.2003.93.7.891
  9. Kim, A. H., Kim, S. B., Han, K. D. and Kim, H. T. 2014. Monitoring for the resistance of strobilurin fungicide against Botrytis cinerea causing gray mold disease. Korean J. Pestic. Sci. 18: 161-167. (In Korean) https://doi.org/10.7585/kjps.2014.18.3.161
  10. Kim, J. T., Lee, K. H., Min, J. Y., Cho, I. J., Kang B. K., Park S. W. et al. 2004. Fluctuation of the sensitivity of Colletotrichum spp. causing the red-pepper anthracnose to chlorothalonil. Korean J. Pestic. Sci. 8: 231-237. (In Korean)
  11. Kim, J. T., Park, S.-Y., Choi, W., Lee, Y.-H. and Kim, H. T. 2008. Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol. J. 24: 17-23. https://doi.org/10.5423/PPJ.2008.24.1.017
  12. Kim, S., Min, J. and Kim, H. T. 2019. Occurrence and mechanism of fungicide resistance in Colletotrichum acutatum causing pepper anthracnose against pyraclostrobin. Korean J. Pestic. Sci. 23: 202-211. (In Korean) https://doi.org/10.7585/kjps.2019.23.3.202
  13. Li, T., Xiu, Q., Zhang, J., Wang, J. X., Duan, Y. B. and Zhou, M. G. 2020. Pharmacological characteristics and efficacy of fluazinam against Corynespora cassiicola, causing cucumber target spot in greenhouses. Plant Dis. 104: 2449-2454. https://doi.org/10.1094/PDIS-12-19-2649-RE
  14. Ma, Z., Felts, D. and Michailides, T. J. 2003. Resistance to azoxystrobin in Alternaria isolates from pistachio in California. Pestic. Biochem. Physiol. 77: 66-74. https://doi.org/10.1016/j.pestbp.2003.08.002
  15. Rural Development Administration. 2022. Pesticide safety information system. URL https://psis.rda.go.kr/psis/agc/res/agchmRegistStusLst.ps [1 September 2022].
  16. Sierotzki, H., Wullschleger, J. and Gisi, U. 2000. Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f. sp. tritici field isolates. Pestic. Biochem. Physiol. 68: 107-112. https://doi.org/10.1006/pest.2000.2506
  17. Steinfeld, U., Sierotzki, H., Parisi, S. Poirey, S. and Gisi, U. 2001. Sensitivity of mitochondrial respiration to different inhibitors in Venturia inaequalis. Pest. Manag. Sci. 57: 787-796. https://doi.org/10.1002/ps.356
  18. Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R, Connell, D. et al. 2021. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18: 1112. https://doi.org/10.3390/ijerph18031112
  19. Vitoratos, A. G. 2014. Mode of action and genetic analysis of resistance to fluazinam in Ustilago maydis. J. Phytopathol. 162: 737-746. https://doi.org/10.1111/jph.12254
  20. Wood, P. N. and Fisher, B. M. 2017. The effect of fungicides on spore germination, mycelial growth and lesion development of Phlyctema vagabunda (syn: Neofabraea alba) (bull's eye rot of apples). N. Z. Plant Prot. 70: 112-119.