DOI QR코드

DOI QR Code

실험적/수치적 방법이 혼합된 VCT를 활용한 내부 압력을 받는 원통형 쉘의 좌굴 하중 예측

The Estimation of Buckling Load of Pressurized Unstiffened Cylindrical Shell Using the Hybrid Vibration Correlation Technique Based on the Experimental and Numerical Approach

  • 투고 : 2022.07.01
  • 심사 : 2022.08.25
  • 발행 : 2022.10.01

초록

압축력을 받는 발사체의 추진제 탱크 구조는 좌굴에 의한 파손이 발생할 위험이 크다. 탱크 구조와 같이 두께가 얇고 반지름이 큰 대형 경량 구조물은 제작 과정이 어렵고 복잡하므로 시험 후 사용을 위해 비파괴적 시험법을 이용한 좌굴 하중 예측이 요구된다. 압축 하중-고유 진동수와의 관계를 이용하여 좌굴 하중을 예측하는 Vibration Correlation Technique(VCT)에 관한 많은 연구가 수행되었으나 좌굴 하중을 정확히 예측하기 위하여 큰 압축 하중을 필요로 하는 시험이 요구되었고 구조물의 내부 압력이 증가됨에 따라 예측 정확도가 현저히 떨어지는 경향을 보였다. 본 논문에서는 내압 증가에 따라 예측 정확도가 저하되는 경향과 원인을 분석하고 유한요소해석 결과와 압축 시험 결과를 혼합한 VCT를 제안하여 시험 후 추진제 탱크의 사용이 가능할 정도의 낮은 압축 하중 시험 값에서도 좌굴 하중 예측 정확도를 증대시킬 수 있는 방법을 제안하였다. 제안된 방법에 의한 좌굴 예측값은 실제 좌굴 시험 값과 매우 잘 일치하였다.

Since the propellant tank structure of the projectile is mainly subjected to a compressive force, there is a high risk of damage due to buckling. Large and lightweight structures such as propellant tank have a complex manufacturing process. So it requires a non-destructive test method to predict buckling load to use the structure after testing. Many studies have been conducted on Vibration Correlation Technique(VCT), which predicts buckling load using the relationship between compressive load and natural frequency, but it requires a large compressive load to predict the buckling load accurately, and it tends to decrease prediction accuracy with increasing internal pressure in structure. In this paper, we analyzed the causes of the decrease in prediction accuracy when internal pressure increases and proposed a method increasing prediction accuracy under the low compressive load for being usable after testing, through VCT combined testing and FEA result. The prediction value by the proposed method was very consistent with the measured actual buckling load.

키워드

과제정보

이 연구는 충남대학교 학술연구비에 의해 지원되었음.

참고문헌

  1. Sim, C. H., Kim, H. I., Lee, Y. L., Park, J. S. and Lee, K. J., "Derivations of Knockdown Factors for Cylinderical Structures Considering Different Initial Imperfection Models and Thickness Ratios," International Journal of Aeronautical and Space Sciences, Vol. 19, No. 3, 2018, pp. 626~635. https://doi.org/10.1007/s42405-018-0069-4
  2. Lurie, H., "Lateral Vibrations as Related to Structural Stability," The American Society of Mechanical Engineers, Vol. 19, No. 2, 1952, pp. 195~204. https://doi.org/10.1115/1.4010446
  3. Souza, A., Fok, W. C. and Walker, A. C., "Review of Experimental Techniques for Thin Walled Structures Liable to Buckling: Neutral and Unstable Buckling," Experimental Techniques, Vol. 7, No. 9, 1983, pp. 21~25. https://doi.org/10.1111/j.1747-1567.1983.tb01811.x
  4. Arbelo, M. A., de Almedia, S. F. M., Donadon, M. V., Rett, S. R., Castro, S. G. P., Kalnins, K. and Ozolins, O., "Vibration Correlation Technique for the Estimation of Real Boundary Conditions and Buckling Load of Unstiffened Plates and Cylindrical Shells," Thin-Walled Structures, Vol. 79, 2014, pp. 119~128. https://doi.org/10.1016/j.tws.2014.02.006
  5. Arbelo, M. A., Kalnins, K., Skukis, E., Castro, S. G. A. and Degenhardt, R., "Experimental and Numerical Estimation of Buckling Load on Unstiffened Cylindrical Shells Using a Vibration Correlation Technique," Thin-Walled Structures, Vol. 94, 2015, pp. 273~279. https://doi.org/10.1016/j.tws.2015.04.024
  6. Kalnins, K., Arbelo, M. A., Ozolins, O., Castro, S. G. P. and Degenhardt, R., "Experimental Nondestructive Test for Estimation of Buckling Load on Unstiffened Cylindrical Shells Using Vibration Correlation Technique," Shock and Vibration, 2015, pp. 1~8.
  7. Skukis, E., Ozolins, O., Kalnins, K. and Arbelo, M. A., "Experimental Test for Estimation of Buckling Load on Unstiffened Cylindrical Shells by Vibration Correlation Technique," Procedia Engineering, Vol. 172, 2017, pp. 1023~1030. https://doi.org/10.1016/j.proeng.2017.02.154
  8. Laban, E., Abramovich, H. and Bisagni, C., "An Experimental Vibration Buckling Investigation on Classical and Variable Angle Tow Composite Shells under Axial Compression," Journal of Sound and Vibration, Vol. 449, 2019, pp. 315~329. https://doi.org/10.1016/j.jsv.2019.02.034
  9. Skukis, E., Jekabsons, G., Andersons, J., Ozolins, O., Labans, E. and Kalnins, K., "Robustness of Empirical Vibration Correlation Techniques for Predicting The Instability of Unstiffened Cylindrical Composite Shells in Axial Compression," Polymers, Vol. 12, No. 12, 2020.
  10. Franzoni, F., Odermann, F., Wilckens, D., Skukis, E., Kalnins, K., Arbelo, M. A. and Degenhardt, R., "Assessing the Axial Buckling Load of a Pressurized Orthotropic Cylindrical Shell through Vibration Correlation Technique," Thin-walled Structures, Vol. 137, 2019, pp. 535~366.
  11. Jeon, M. H., Kong, S. T., Cho, H. J., Kim, I. G., Park, J. S., Yoo, J. T. and Yoon, Y. H., "Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 50, No. 2, 2022, pp. 75~82.
  12. Franzoni, F., Degengardt, R., Albus, J. and Arbelo, M. A., "Vibration correlation technique for predicting the buckling load of imperfection-sensitive isotropic cylindrical shells: An analytical and numerical verification," Thin-Walled Structures, Vol. 140, 2019, pp. 236~247. https://doi.org/10.1016/j.tws.2019.03.041
  13. Franzoni, F., Odermann, F., Lanbans, E., Bisagni, C., Arbelo, M. A. and Degengardt, R., "Experimental validation of the vibration correlation technique robustness to predict buckling to unstiffened composite cylindrical shells," Composite Structures, Vol. 224, 2019.