DOI QR코드

DOI QR Code

A Realization of Real Time Algorithm for Fault and Health Diagnosis of Turbofan Engine Components

터보팬엔진의 실시간 구성품 결함 및 건전성 진단 알고리즘 구현

  • Received : 2022.05.30
  • Accepted : 2022.08.25
  • Published : 2022.10.01

Abstract

An algorithm is realized for estimating the component fault and health diagnosis such as a deterioration. Based on the turbofan engine health diagnosis model, from the health parameters which are estimated by a real time tracking filter, the outliers are eliminated efficiently by an effective median filter to minimize an false alarm. The difference between the fault and deterioration trends is identified by the detection measure for abrupt change, thereby the clear diagnosis classifying the fault and the health condition is possible. The effectiveness of the algorithm for fault and health diagnosis is verified from the simulated results of engine component faults and deterioration.

엔진 구성품의 결함 및 열화 등의 건전성 진단을 위한 알고리즘을 구현하였다. 이를 위해서 터보팬엔진 모델로부터 성능 진단모델을 도출하고 진단변수 추적필터를 이용하여 실시간 결함 및 건전성을 추정한 후 효과적인 중간값 필터를 통해 이상 잡음을 제거함으로써 오경보 발생을 최소화하였다. 여기에 단차 결함 탐지 기법을 적용하여 결함과 열화를 식별하였고, 운전 중 구성품의 결함 및 건전성을 분명히 구분하여 진단할 수 있도록 하였다. 엔진 구성품의 결함 및 열화 발생의 모사를 통해서 구현된 알고리즘의 효용성을 확인하였다.

Keywords

Acknowledgement

본 연구는 방위사업청, 국방과학연구소의 "터보팬 엔진의 건전성 관리를 위한 탑재형 소프트웨어 개발" 과제의 일환으로 수행되었습니다.

References

  1. Mohammadreza, T., Elias. T., Masdi, M. and Karim, A., "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Vol. 198, 2017, pp. 122~144. https://doi.org/10.1016/j.apenergy.2017.04.048
  2. Fentaye, A. D., Baheta. A. T., Gilani, S. I. and Kyprianidis, K. G., "A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art-Methods, Challenges and Opportunities," Aerospace, July 2019, pp. 1~53.
  3. Verma, R., Roy, N. and Ganguli, R., "Gas turbine diagnostics using a soft computing approach," Applied Mathematics and Computation, Vol. 172, 2006, pp. 1342~1363. https://doi.org/10.1016/j.amc.2005.02.057
  4. Simon, D. and Simon, D. L., "A Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering," Journal of Engineering for Gas Turbines and Power, Vol. 127, April 2005, pp. 323~328. https://doi.org/10.1115/1.1789153
  5. Simon, D. L. and Garg, S., "A Systematic Approach for Model-Based Aircraft Engine Performance Estimation," NASA/TM-2010-216077.
  6. Simon, D. L. and Armstrong, J. B., "An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics," NASA/TM-2012- 217725.
  7. Simon, D., "A comparison of filtering approaches for aircraft engine health estimation," Aerospace Science and Technology, Vol. 12, June 2007, pp. 276~283. https://doi.org/10.1016/j.ast.2007.06.002
  8. Kobayashi, T. and Simon, D. L., "Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management," NASA/TM-2007-214980, September 2007.
  9. Lu, F., Che, Y., Huang, J., Zhang, D. and Liu, N., "An integrated nonlinear model-based approach to gas turbine engine sensor fault diagnostics," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, No. 11, October 2013, pp. 2007~2021.
  10. Pu, S., Liu, S., Jiang, H. and Yu, D., "Adaptive gas path diagnostics using strong tracking filter," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, No. 4, January 2013, pp. 577~585.
  11. Borquet, S. and Leonard, O., "A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Performance Monitoring," Journal of Engineering for Gas Turbines and Power, Vol. 131, January 2009, pp. 601-1~608.
  12. Chapman, J. W., Lavelle, T., Mat, R. D., Jitt, J. S. and Guo, T. H., "Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide," NASA/TM-2014-216638.
  13. Han, D. J., "A Study on Real Time Fault Diagnosis and Health Estimation of Turbojet Engine through Gas Path Analysis," International Journal of Aeronautical and Space Sciences, Vol. 49, No. 4, 2021, pp. 311~320.
  14. Huang, Y., Zhang, Y., Zhao, Y., Shi, P. and Chambers, J. A., "A Novel Outlier-Robust Kalman Filtering Framework based on Statistical Similarity Measure," IEEE Transactions on Automatic Control, Vol. 66, No. 6, June 2021, pp. 2677~2692. https://doi.org/10.1109/TAC.2020.3011443
  15. Yli-Harja, O., Koivisto, P., Bangham, J. A., Cawley, G., Harvey, R. and Shmulevich, I., "Simplifed implementation of the recursive median sieve," Signal Processing, Vol. 81, November 2000, pp. 1565~1570. https://doi.org/10.1016/S0165-1684(01)00054-8
  16. Ganguli, R. and Dan, B., "Trend Shift Detection in Jet Engine Gas Path Measurements Using Cascaded Recursive Median Filter With Gradient and Laplacian Edge Detector," Journal of Engineering for Gas Turbines and Power, Vol. 126, January 2004, pp. 55~61. https://doi.org/10.1115/1.1635400
  17. Nikovski, D. and Jain, A., "Fast adaptive algorithms for abrupt change detection," Machine Learning, Vol. 79, May 2010, pp. 283~306. https://doi.org/10.1007/s10994-009-5122-x
  18. Lipowsky, H., Staudacher, S., Bauer, S. and Schmidt, K. J., "Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance," Journal of Engineering for Gas Turbines and Power, Vol. 132, March 2010, pp. 602~608.