Acknowledgement
This work has been supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1062917).
References
- Aggarwal, C.C., Hinneburg, A., and Keim, D.A., On the surprising behavior of distance metrics in high dimensional space, In International Conference on Database Theory, 2001, Springer, Berlin, Heidelberg, pp. 420-434.
- Alqahtani, A., Ali, M., Xie, X., and Jones, M.W., Deep Time-Series Clustering: A Review, Electronics, 2021, Vol. 10, No. 23, pp. 3001. https://doi.org/10.3390/electronics10233001
- Aranganayagi, S. and Thangavel, K., Clustering categorical data using silhouette coefficient as a relocating measure, In International conference on computational intelligence and multimedia applications, 2007, IEEE ,Vol. 2, pp. 13-17.
- Arthur, D. and Vassilvitskii, S., k-means++: The advantages of careful seeding, Stanford, 2006.
- Caldeira, J. and Moura, G.V., Selection of a portfolio of pairs based on cointegration: A statistical arbitrage strategy, Available at SSRN 2196391, 2013.
- Day, W.H. and Edelsbrunner, H., Efficient algorithms for agglomerative hierarchical clustering methods, Journal of Classification, 1984, Vol. 1, No. 1, pp. 7-24. https://doi.org/10.1007/BF01890115
- Dickey, D.A. and Fuller, W.A., Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 1979, Vol. 74, No. 366a, pp. 427-431.
- Flori, A. and Regoli, D., Revealing pairs-trading opportunities with long short-term memory networks, European Journal of Operational Research, 2021, Vol. 295, No. 2, pp. 772-791. https://doi.org/10.1016/j.ejor.2021.03.009
- Goldkamp, J. and Dehghanimohammadabadi, M., Evolutionary multi-objective optimization for multivariate pairs trading, Expert Systems with Applications, 2019, Vol. 135, pp. 113-128. https://doi.org/10.1016/j.eswa.2019.05.046
- Gupta, K. and Chatterjee, N., Selecting stock pairs for pairs trading while incorporating lead? lag relationship, Physica A: Statistical Mechanics and its Applications, 2020, Vol. 551, 124103. https://doi.org/10.1016/j.physa.2019.124103
- Han, C., He, Z., and Toh, A.J.W., Pairs Trading via Unsupervised Learning, Available at SSRN 3835692, 2021.
- Hartigan, J.A. and Wong, M.A., Algorithm AS 136: A k-means clustering algorithm, Journal of the royal statistical society. series c (applied statistics), 1979, Vol. 28, No. 1, pp. 100-108.
- Hautamaki, V., Cherednichenko, S., Karkkainen, I., Kinnunen, T., and Franti, P., Improving k-means by outlier removal, In Scandinavian conference on image analysis, Springer, Berlin, Heidelberg, 2005, pp. 978-987.
- Johnson, S.C., Hierarchical clustering schemes, Psychometrika, 1967, Vol. 32, No. 3, pp. 241-254. https://doi.org/10.1007/BF02289588
- Magdon-Ismail, M. and Atiya, A.F., Maximum drawdown, Risk Magazine, 2004, Vol. 17, No. 10, pp. 99-102.
- Manduchi, L., Huser, M., Vogt, J., Ratsch, G., and Fortuin, V., DPSOM: Deep Probabilistic Clustering with self-organizing maps, arXiv preprint arXiv:1910.01590, 2019.
- Murtagh, F., A survey of recent advances in hierarchical clustering algorithms, The Computer Journal, 1983, Vol. 26, No. 4, pp. 354-359. https://doi.org/10.1093/comjnl/26.4.354
- Muller, M., Dynamic time warping, Information Retrieval for Music and Motion, 2007, pp. 69-84.
- Ramos-Requena, J.P., Trinidad-Segovia, J.E., and Sanchez-Granero, M.A., Introducing Hurst exponent in pair trading, Physica A: Statistical Mechanics and its Applications, 2017, Vol. 488, pp. 39-45. https://doi.org/10.1016/j.physa.2017.06.032
- Rand, W.M., Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, 1971, Vol. 66, No. 336, pp. 846-850. https://doi.org/10.1080/01621459.1971.10482356
- Roth, A.E., The Shapley Value: Essays in Honor of Lloyd S, Shapley, Cambridge University Press, 1988.
- Sarmento, S.M. and Horta, N., Enhancing a pairs trading strategy with the application of machine learning, Expert Systems with Applications, 2020, Vol. 158, 113490. https://doi.org/10.1016/j.eswa.2020.113490
- Sharpe, W.F., The Sharpe ratio, Streetwise? the Best of the Journal of Portfolio Management, 1998, pp. 169-185.
- Wen, D., Ma, C., Wang, G.J., and Wang, S., Investigating the Features of Pairs Trading Strategy: A Network Perspective on the Chinese stock market, Physica A: Statistical Mechanics and its Applications, 2018, Vol. 505, pp. 903-918. https://doi.org/10.1016/j.physa.2018.04.021
- Zhang, H., Ho, T.B., Zhang, Y., and Lin, M.S., Unsupervised feature extraction for time series clustering using orthogonal wavelet transform, Informatica, 2006, Vol. 30, No. 3