DOI QR코드

DOI QR Code

Effect of Selected Inoculant Applications on Chemical Compositions and Fermentation Characteristics of High Moisture Rye Silage

  • Lee, Seong Shin (Animal Nutrition and Physiology Division, National Institute of Animal Science, RDA) ;
  • Jeong, Seung Min (Division of Applied Life Science (BK21Four), Gyeongsang National University) ;
  • Seo, Myeong Ji (Division of Applied Life Science (BK21Four), Gyeongsang National University) ;
  • Joo, Young Ho (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Paradhipta, Dimas Hand Vidya (Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada) ;
  • Seong, Pil Nam (Animal Nutrition and Physiology Division, National Institute of Animal Science, RDA) ;
  • Kim, Sam Churl (Division of Applied Life Science (BK21Four), Gyeongsang National University)
  • Received : 2022.08.15
  • Accepted : 2022.09.13
  • Published : 2022.09.30

Abstract

The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 × 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 × 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 × 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.

Keywords

Acknowledgement

This research was performed with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014778022022)" Rural Development Administration, South Korea.

References

  1. Adesogan, A.T., Krueger, N., Salawu, M.B., Dean, D.B. and Staples, C.R. 2004. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science. 87:3407-3416. doi:10.3168/jds.S0022-0302(04)73476-1
  2. Adesogan, A.T., Ma, Z.X., Romero, J.J. and Arriola K.G. 2014. Improving cell wall digestion and animal performance with fibrolytic enzymes. Journal of Animal Science. 92:1317-1330. doi:10.2527/jas2013-7273.
  3. Aksu, T., Baytok, E. and Bolat, D. 2004. Effects of a bacterial silage inoculant on corn silage fermentation and nutrient digestibility. Small Ruminant Research. 55:249-252. doi:10.1016/j.smallrumres.2003.12.012
  4. AOAC. 2005. Official method of analysis (18th ed.). Association of Official Analytical Chemists, Washington DC, USA.
  5. Chaney, A.L. and Marbach, E.P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8:130-132. https://doi.org/10.1093/clinchem/8.2.130
  6. Choi, K.C., Soundarranjan, I., Srisesharam, S., Park, H.S., Kim, J.H., Jung, J.S. and Kim, H.S. 2016. Potential effects of novel lactic acid bacteria on fermentation quality of rye haylage. Journal of The Korean Society of Grassland Science. 36:23-28. doi:10.5333/KGFS.2016.36.1.23
  7. Danner, H., Holzer, M., Mayrhuber, E. and Braun, R. 2003. Acetic acid increases stability of silage under aerobic condition. Applied and Environmental Microbiology. 69:562-567. doi:10.1128/AEM.69.1.562-567.2003
  8. Han, O.K., Hwang, J.J., Park, H.H., Kim, D.W., Oh, Y.J., Park, T.I., Ku, J.H., Kwon, Y.U., Kweon, S.J. and Park, K.G. 2015. A new high grain yielding forage rye cultivar, "Seedgreen". Journal of the Korean Society of Grassland Science. 35:105-111. doi:10.5333/KGFS.2015.35.2.105
  9. Hartinger, T., Gresner, N. and Sudekum, K.H. 2019. Effect of wilting intensity, dry matter content and sugar addition on nitrogen fractions in lucerne silages. Agriculture. 9:11-27. doi:10.3390/agriculture9010011
  10. Kang, H.C., Park, Y.H. and Go, S.J. 2003. Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid. Microbiological Research. 158:321-326. doi:10.1078/0944-5013-00211
  11. Kang, T.W., Adesogan, A.T., Kim, S.C. and Lee, S.S. 2009. Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage. Journal of Dairy Science. 92:732-738. doi:10.3168/jds.2007-0780
  12. Kim, D.A., Sung, K.I. and Kwon, C.H. 1986. Effects of sowing time and seeding rate on growth characteristics, winter survival and dry matter yield of forage rye. Journal of the Korean Society of Grassland Science. 6:164-168.
  13. Kim, H.S., Han, O.K. and Kwak, Y.S. 2017. Complete genome sequence and functional study of the fibrinolytic enzymeproducing bacterium Leuconostoc holzapfelii 5H4, a silage probiotic. Journal of Genomics. 5:32-35. doi:10.7150/jgen.19407
  14. Kim, J.G., Park, H.S., Lee, S.H., Jung, J.S., Lee, K.W. and Ko, H.J. 2015. Evaluation of productivity and silage quality for domestically developed forage crops in Korea. Journal of the Korean Society of Grassland Science. 35:145-151. doi:10.5333/KGFS.2015.35.2.145
  15. Kim, M.J., Kim, H.S., Kim, S.C. and Kwak, Y.S. 2018. Complete genome sequence of Lanthionine-Producing Lactobacillus brevis Strain 100D8, generated by PacBio sequencing. Microbiology Resource Announcements. 7:e01220-18. doi:10.1128/MRA.01220-18
  16. Kung Jr, L. and Shaver, R. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage. 3:1-5.
  17. Kung Jr, L., Shaver, R.D., Grant, R.J. and Schmidt, R.J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science. 101:4020-4033. doi:10.3168/jds.2017-13909
  18. Lee, S.S., Choi, J.S., Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Noh, H.T., Kim, D.H. and Kim, S.C. 2021. Application of selected inoculant producing antifungal and fibrinolytic substances on rye silage with different wilting time. Processes. 9:879-889. doi:10.3390/pr9050879
  19. Lee, S.S., Joo, Y.H., Choi, J.S., Jeong, S.M., Paradhipta, D.H.V., Noh, H.T., Han, O.K. and Kim, S.C. 2021. Effects of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics of rye silage. Journal of the Korean Society of Grassland and Forage Science. 41:259-266. doi:10.5333/KGFS.2021.41.4.259
  20. Leibensperger, R.Y. and Pitt, R.E. 1987. A model of clostridial dominance in ensilage. Grass and Forage Science. 42:297-317. doi:10.1111/j.1365-2494.1987.tb02118.x
  21. McDonald, P., Henderson, A.R. and Heron, S.J.E. 1991. The Biochemistry of silage (2nd ed.). Chalcombe Publications, Bucks.
  22. Nkosi, B.D. and Meeske, R. 2010. Effects of ensiling totally mixed potato hash ration with or without a heterofermentative bacterial inoculant on silage fermentation, aerobic stability, growth performance and digestibility in lambs. Animal Feed Science and Technology. 161:38-48. doi:10.1016/j.anifeedsci.2010. 07.015
  23. Nsereko, V.L., Smiley, B.K., Rutherford, W.M., Spielbauer, A., Forrester, K.J., Hettinger, G.H., Harman E.K. and Harman, B.R. 2008. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Animal Feed Science and Technology. 145:122-135. doi:10.1016/j.anifeedsci.2007.06.039
  24. Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Lee, S.S., Kim, D.H., Kim, J.D. and Kim, S.C. 2019. Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. Journal of Applied Animal Research. 47:486-91. doi:10.1080/09712119.2019. 1670667
  25. Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Lee, S.S., Kwak, Y.S., Han, O.K., Kim, D.H. and Kim, S.C. 2020. Effects of wild or mutated inoculants on rye silage and its rumen fermentation indices. Asian-Australasian Journal of Animal Sciences. 33:949. doi:10.5713/ajas.19.0308
  26. Paul, M. and Donk, W.V. 2005. Chemical and enzymatic synthesis of lanthionines. Mini-Reviews in Organic Chemistry. 2:23-37. doi:10.2174/1570193052774108
  27. SAS Inst., Inc. 2011. SAS user's guide, Version 9.3 edition. Cary, NC, USA.
  28. Tilley, J.M.A. and Terry, R.A. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science. 18:104-111. doi:10.1111/j.1365-2494.1963.tb00335.x
  29. Vetter, R.L. and Von Glan, K.N. 1978. Abnormal silages and silage related disease problems. NFIA Literature Review on Fermentation of Silage (National Feed Ingredients Association).
  30. Woolford, M.K. 1975. Microbiological screening of the straight chain fatty acids (C1-C12) as potential silage additives. Journal of the Science of Food and Agriculture. 26:219-228. doi:10.1002/jsfa.2740260213
  31. Xie, Y., Guo, J., Li, W., Wu, Z. and Yu, Z. 2021. Effects of ferulic acid esterase-producing lactic acid bacteria and storage temperature on the fermentation quality, in vitro digestibility and phenolic acid extraction yields of sorghum (Sorghum bicolor L.) silage. Microorganisms. 9:114. doi:10.3390/microorganisms9010114
  32. Yang, Z. 2000. Antimicrobial compounds and extracellular polysaccharides produced by lactic acid bacteria: Structures and properties. University of Helsinki, Helsinki.
  33. Yun, J. and Lee, D.G. 2016. A novel fungal killing mechanism of propionic acid. FEMS Yeast Research. 16. doi:10.1093/femsyr/fow089