DOI QR코드

DOI QR Code

A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service

인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로

  • Kim, HaYeong (Dept. of Smart Experience Design, Graduate School of Techno Design, Kookmin University) ;
  • Heo, JeongYun (Dept. of Smart Experience Design, Graduate School of Techno Design, Kookmin University) ;
  • Kwon, Hochang (Trans Media Institute, Sungkyunkwan University)
  • 김하영 (국민대학교 TED 스마트경험디자인학과) ;
  • 허정윤 (국민대학교 TED 스마트경험디자인학과) ;
  • 권호창 (성균관대학교 트랜스미디어 연구소)
  • Received : 2022.08.26
  • Accepted : 2022.09.26
  • Published : 2022.09.30

Abstract

With the spread of Artificial Intelligence (AI), various AI-based services are expanding in the financial sector such as service recommendation, automated customer response, fraud detection system(FDS), credit scoring services, etc. At the same time, problems related to reliability and unexpected social controversy are also occurring due to the nature of data-based machine learning. The need Based on this background, this study aimed to contribute to improving trust in AI-based financial services by proposing a checklist to secure fairness in AI-based credit scoring services which directly affects consumers' financial life. Among the key elements of trustworthy AI like transparency, safety, accountability, and fairness, fairness was selected as the subject of the study so that everyone could enjoy the benefits of automated algorithms from the perspective of inclusive finance without social discrimination. We divided the entire fairness related operation process into three areas like data, algorithms, and user areas through literature research. For each area, we constructed four detailed considerations for evaluation resulting in 12 checklists. The relative importance and priority of the categories were evaluated through the analytic hierarchy process (AHP). We use three different groups: financial field workers, artificial intelligence field workers, and general users which represent entire financial stakeholders. According to the importance of each stakeholder, three groups were classified and analyzed, and from a practical perspective, specific checks such as feasibility verification for using learning data and non-financial information and monitoring new inflow data were identified. Moreover, financial consumers in general were found to be highly considerate of the accuracy of result analysis and bias checks. We expect this result could contribute to the design and operation of fair AI-based financial services.

인공지능(AI)의 확산과 함께 금융 분야에서도 상품추천, 고객 응대 자동화, 이상거래탐지, 신용 심사 등 다양한 인공지능 기반 서비스가 확대되고 있다. 하지만 데이터에 기반한 기계학습의 특성상 신뢰성과 관련된 문제 발생과 예상하지 못한 사회적 논란도 함께 발생하고 있다. 인공지능의 효용은 극대화하고 위험과 부작용은 최소화할 수 있는 신뢰할 수 있는 인공지능에 대한 필요성은 점점 더 커지고 있다. 이러한 배경에서 본 연구는 소비자의 금융 생활에 직접 영향을 끼치는 인공지능 기반 개인신용평가의 공정성 확보를 위한 체크리스트 제안을 통해 인공지능 기반 금융서비스에 대한 신뢰 향상에 기여하고자 하였다. 인공지능 신뢰성의 주요 핵심 요소인 투명성, 안전성, 책무성, 공정성 중 포용 금융의 관점에서 자동화된 알고리즘의 혜택을 사회적 차별 없이 모두가 누릴 수 있도록 공정성을 연구 대상으로 선정하였다. 문헌 연구를 통해 공정성이 영향을 끼치는 서비스 운용의 전 과정을 데이터, 알고리즘, 사용자의 세 개의 영역으로 구분하고, 12가지 하위 점검 항목과 항목별 세부 권고안으로 체크리스트를 구성하였다. 구성한 체크리스트는 이해관계자(금융 분야 종사자, 인공지능 분야 종사자, 일반 사용자)별 계층적 분석과정(AHP)을 통해 점검 항목에 대한 상대적 중요도 및 우선순위를 도출하였다. 이해관계자별 중요도에 따라 세 개의 그룹으로 분류하여 분석한 결과 학습데이터와 비금융정보 활용에 대한 타당성 검증 및 신규 유입 데이터 모니터링의 필요성 등 실용적 측면에서 구체적인 점검 사항을 파악하였고, 금융 소비자인 일반 사용자의 경우 결과에 대한 해석 오류 및 편향성 확인에 대한 중요도를 높게 평가한다는 것을 확인할 수 있었다. 본 연구의 결과가 더 공정한 인공지능 기반 금융서비스의 구축과 운영에 기여할 수 있기를 기대한다.

Keywords

References

  1. 과학기술정보통신부. (2021). 사람이 중심이 되는 인공지능을 위한 신뢰할 수 있는 인공지능 실현 전략[안]. Retrieved 2022년 3월 12일, from https://www.korea.kr/common/download.do?fileId=195009613&tblKey=GMN
  2. 권영준, 남재현, 조민정. (2011). 개인신용평가에서의 비금융정보의 경제적 효과. 한국경제연구, 29(2), 81-107.
  3. 금융위원회. (2020년). '21.1.1일부터는 신용점수로 자신의 신용을 확인하세요. Retrieved 2022년 3월 12일, from http://www.fsc.go.kr:8300/v/p42S1u6Twh2
  4. 금융위원회. (2021). 금융분야 AI 가이드라인 및 주요 검토 필요사항. Retrieved 2022년 3월 5일, from http://www.fsc.go.kr:8300/v/pq8TQUQFZSY
  5. 금융위원회. (2021). 코로나 이후 시대의 디지털 대전환을 선도하기 위해 금융분야 인공지능(AI)을 활성화하겠습니다. Retrieved 2022년 4월 6일 from http://www.fsc.go.kr:8300/v/pbVFpTRt0h5
  6. 김지웅, 허준, 김장일. (2013). 빅데이터의 금융기관 활용 사례. The Magazine of the IEIE, 40(8), 49-54.
  7. 소순주, 안성진. (2021). 인공지능 윤리원칙 분류 모형 및 구성요소에 관한 연구. 컴퓨터교육학회 논문지, 24(6), 119-132.
  8. 안소영. (2021년, 9월 16일). 대안신용평가 시대온다... 전통 금융사들 빅데이터 센터 세워 대응해야. ChosunBiz. https://biz.chosun.com/stock/finance/2021/09/16/7MJQZ34FLFD7RHSFY7D3TR342A/
  9. 양희태, 최병삼, 이제영, 장훈, 백서인, 김단비. (2018). 인공지능 기술 전망과 혁신정책 방향 - 국가 인공지능 R&D 정책 개선방안을 중심으로-. Retrieved 2022년 3월 2일, from https://www.nkis.re.kr:4445/researchReport_view.do?otpId=OTP_0000000000002198#none
  10. 엄하늘, 김재성, 최상옥. (2020). 머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로. 지능정보연구, 26(2), 105-129. https://doi.org/10.13088/JIIS.2020.26.2.105
  11. 이정선, 서보밀, 권영옥. (2021). 인공지능이 의사결정에 미치는 영향에 관한 연구: 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로. 지능정보연구, 27(3), 231-252. https://doi.org/10.13088/JIIS.2021.27.3.231
  12. 이창효. (2000). 집단의사결정론. 서울: 세종출판사.
  13. 장용석, 김형준, 문정욱, 문아람, 김정언, 이시직,양기문, 황선영, 변순용, 선지원, 이청호, 김봉제. (2020). 윤리적 인공지능을 위한 국가정책 수립. 정책연구, 2020(7), 1-235.
  14. 전종헌. (2020년, 6월 4일). SNS활동 신용평가해 대출했더니 '상환율 95%'...비금융정보 주목. 매일경제. https://www.mk.co.kr/news/economy/view/2020/06/573304/
  15. 최성민. (2020). 개인 신용평가모형과 설명력 이슈. 2020 한국경영정보학회 추계학술대회, 한국과학기술회관, 서울.
  16. 황용석, 정재선, 황현정, 김형준. (2021). 알고리즘 추천 시스템의 공정성 확보를 위한 시론적 연구. 방송통신연구, 169-206.
  17. KDB 미래전략연구소. (2021). '금융분야 AI 가이드라인' 및 금융권의 대응. Retrieved 2022년 2월 26일, from https://eiec.kdi.re.kr/policy/domesticView.do?ac=0000159143
  18. Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54-61. https://doi.org/10.1145/3209581
  19. Bagdasaryan, E., Poursaeed, O., & Shmatikov, V. (2019). Differential privacy has disparate impact on model accuracy. 33rd Conference on Neural Information Processing System, Vancouver, Canada.
  20. Bank for International Settlements(BIS) (2019). Big tech in finance: opportunities and risks. Retrieved December 26, 2021, from https://www.bis.org/publ/arpdf/ar2019e3.pdf
  21. Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. 30th Conference on Neural Information Processing System, Barcelona, Spain.
  22. Bruckner, M. A. (2018). Regulating fintech lending. Banking & Financial Services Policy Report, 37(6).
  23. Buolamwini, J., & Gebru, T. (2018, February). Gender shades: Intersectional accuracy disparities in commercial gender classification. ACM Conference on fairness, accountability and transparency, New York, USA.
  24. Cornacchia, G., Narducci, F., & Ragone, A. (2021, September). A general model for fair and explainable recommendation in the loan domain. Joint Proceedings KaRS 2021 and ComplexRec 2021, Amsterdam, Netherlands.
  25. European Commission. (2018). Communication Artificial Intelligence for Europe. Retrieved January 13, 2022, from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0237&from=EN
  26. European Commission. (2019). Ethics guidelines for trustworthy AI, Report. Retrieved January 13, 2022, from https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf
  27. Financial Stability Board(FSB). (2017). Artificial Intelligence and Machine Learning in Financial Services: Market Developments and Financial Stability Implications. Retrieved March 23, 2022, from https://www.fsb.org/wp-content/uploads/P011117.pdf
  28. Fuster, A., Goldsmith Pinkham, P., Ramadorai, T., & Walther, A. (2022). Predictably unequal? The effects of machine learning on credit markets. The Journal of Finance, 77(1), 5-47. https://doi.org/10.1111/jofi.13090
  29. Hardt, M., Price, E., & Srebro, N. (2016, December). Equality of opportunity in supervised learning. 30th Conference on Neural Information Processing System, Vancouver, Canada.
  30. International Committee on Credit Reporting (ICCR). (2018). Guidance Note: Use of Alternative Data to Enhance Credit Reporting to Enable Access to Digital Financial Services by Individuals and SMEs Operating in the Informal Economy. Retrieved January 24, 2022, from https://www.gpfi.org/sites/gpfi/files/documents/Use_of_Alternative_Data_to_Enhance_Credit_Reporting_to_Enable_Access_to_Digital_Financial_Services_ICCR.pdf
  31. Konig-Kersting, C., Pollmann, M., Potters, J., & Trautmann, S. T. (2021). Good decision vs. good results: Outcome bias in the evaluation of financial agents. Theory and Decision, 90(1), 31-61. https://doi.org/10.1007/s11238-020-09773-1
  32. Kozodoi, N., Jacob, J., & Lessmann, S. (2022). Fairness in credit scoring: Assessment, implementation and profit implications. European Journal of Operational Research, 297(3), 1083-1094. https://doi.org/10.1016/j.ejor.2021.06.023
  33. Lepri, B., Oliver, N., Letouze, E., Pentland, A., & Vinck, P. (2018). Fair, transparent, and accountable algorithmic decision-making processes. Philosophy & Technology, 31(4), 611-627. https://doi.org/10.1007/s13347-017-0279-x
  34. Li, J., & Chignell, M. (2022). FMEA-AI: AI fairness impact assessment using failure mode and effects analysis. AI and Ethics, 1-14.
  35. McCalman, L., Steinberg, D., Abuhamad, G., Brunet, M. E., Williamson, R. C., & Zemel, R. (2022). Assessing AI Fairness in Finance. Computer, 55(1), 94-97.
  36. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35.
  37. Microsoft. (2020). Fairlearn: A toolkit for assessing and improving fairness in AI. Retrieved April 2, 2022, from https://www.microsoft.com/en-us/research/uploads/prod/2020/05/Fairlearn_WhitePaper-2020-09-22.pdf
  38. Monetary Authority of Singapore(MAS). (2020). FEAT Fairness Principles Assessment Case Studies. Retrieved April 25, 2022, from https://www.mas.gov.sg/-/media/MAS/News/Media-Releases/2021/Veritas-Document-2-FEAT-Fairness-Principles-Assessment-Case-Studies.pdf
  39. Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M. E., Ruggieri, S., Turini, F., Papadopoulous, S., Krasankis, E., Kompatsiaris, I., Kurlanda, K. K., Wagner, C., Karimi, F., Fernandez, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., & Staab, S. (2020). Bias in data driven artificial intelligence systems-An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3).
  40. Petrasic, K., Saul, B., Greig, J., & Bornfreund, M. (2017). Algorithms and bias: What lenders need to know. Retrieved April 25, 2022, from https://www.lexology.com/library/detail.aspx?g=c806d996-45c5-4c87-9d8a-a5cce3f8b5ff
  41. Political & Economic Research Council(PERC). (2006). Give credit where credit is due: Increasing access to affordable mainstream credit using alternative data. Retrieved January 3, 2022, from https://www.brookings.edu/wp-content/uploads/2016/06/20061218_givecredit.pdf
  42. Political & Economic Research Council(PERC). (2009). New to Credit from Alternative Data. Retrieved May 3, 2022, from https://www.perc.net/wp-content/uploads/2013/09/New_to_Credit_from_Alternative_Data_0.pdf
  43. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
  44. Saaty, T. L. (1994). Highlights and critical points in the theory and application of the analytic hierarchy process. European journal of operational research, 74(3), 426-447. https://doi.org/10.1016/0377-2217(94)90222-4
  45. Suresh, H., & Guttag, J. (2021). A framework for understanding sources of harm throughout the machine learning life cycle. In Equity and Access in Algorithms, Mechanisms, and Optimization, 1-9.
  46. Vigdor, N. (2019, November 10). Apple Card Investigated After Gender Discrimination Complaints. The New York Times. https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html
  47. World Bank Group (2018). Financial Consumer Protection and New Forms of Data Processing Beyond Credit Reporting. Retrieved April 23, 2022, from https://openknowledge.worldbank.org/bitstream/handle/10986/31009/132035-WP-FCP-New-Forms-of-Data-Processing.pdf?sequence=1&isAllowed=y
  48. World Bank Group. (2019). Credit Scoring Approaches Guidelines. Retrieved December 14, 2021, from https://thedocs.worldbank.org/en/doc/935891585869698451-0130022020/original/CREDITSCORINGAPPROACHESGUIDELINESFINALWEB.pdf
  49. World Bank and CGAP. (2018). Data Protection and Privacy for Alternative Data. Retrieved May 17, 2022, from https://www.gpfi.org/sites/gpfi/files/documents/Data_Protection_and_Privacy_for_Alternative_Data_WBG.pdf
  50. Yusof Ishak Institute. (2021). The Prospects and Dangers of Algorithmic Credit Scoring in Vietnam: Regulating a Legal Blindspot. Retrieved January 12, 2022, from https://think-asia.org/bitstream/handle/11540/13169/ISEASEWP2021-1Lainez.pdf?sequence=1