DOI QR코드

DOI QR Code

데이터셋 유형 분류를 통한 클래스 불균형 해소 방법 및 분류 알고리즘 추천

Class Imbalance Resolution Method and Classification Algorithm Suggesting Based on Dataset Type Segmentation

  • 김정훈 (국민대학교 비즈니스IT전문대학원 4단계 BK21 교육연구팀) ;
  • 곽기영 (국민대학교 경영대학/비즈니스 IT전문대학원)
  • Kim, Jeonghun (Graduate School of Business IT, Kookmin University) ;
  • Kwahk, Kee-Young (College of Business Administration/Graduate School of Business IT, Kookmin University)
  • 투고 : 2022.06.16
  • 심사 : 2022.07.04
  • 발행 : 2022.09.30

초록

AI(Artificial Intelligence)를 다양한 산업에서 접목하기 위해 알고리즘 선택에 대한 관심이 증가하고 있다. 알고리즘 선택은 대부분 데이터 과학자의 경험에 의해 결정되는 경우가 많다. 하지만 경험이 부족한 데이터 과학자의 경우 데이터셋 특성 기반의 메타학습(meta learning) 을 통해 알고리즘을 선택한다. 기존의 알고리즘 추천은 선정 과정이 블랙박스이기 때문에 어떠한 근거에 의해 도출되는지 알 수 없었다. 이에 따라 본 연구에서는 k-평균 군집분석을 활용하여 데이터셋 특성에 따라 유형을 나누고 적합한 분류 알고리즘과 클래스 불균형 해소 방법을 탐색한다. 본 연구 결과 네 가지 유형을 도출하였으며 데이터셋 유형에 따라 적합한 클래스 불균형 해소 방법과 분류 알고리즘을 추천하였다.

In order to apply AI (Artificial Intelligence) in various industries, interest in algorithm selection is increasing. Algorithm selection is largely determined by the experience of a data scientist. However, in the case of an inexperienced data scientist, an algorithm is selected through meta-learning based on dataset characteristics. However, since the selection process is a black box, it was not possible to know on what basis the existing algorithm recommendation was derived. Accordingly, this study uses k-means cluster analysis to classify types according to data set characteristics, and to explore suitable classification algorithms and methods for resolving class imbalance. As a result of this study, four types were derived, and an appropriate class imbalance resolution method and classification algorithm were recommended according to the data set type.

키워드

참고문헌

  1. Amin, A., Anwar, S., Adnan, A., Nawaz, M., Howard, N., Qadir, J., ... & Hussain, A. (2016). Comparing oversampling techniques to handle the class imbalance problem: A customer churn prediction case study. IEEE Access, 4, 7940-7957. https://doi.org/10.1109/ACCESS.2016.2619719
  2. Anwar, N., Jones, G., & Ganesh, S. (2014). Measurement of data complexity for classification problems with unbalanced data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 7(3), 194-211. https://doi.org/10.1002/sam.11228
  3. Blagus, R., & Lusa, L. (2013). Improved shrunken centroid classifiers for high-dimensional class-imbalanced data. BMC bioinformatics, 14(1), 1-13. https://doi.org/10.1186/1471-2105-14-1
  4. Cano, J. R. (2013). Analysis of data complexity measures for classification. Expert systems with applications, 40(12), 4820-4831. https://doi.org/10.1016/j.eswa.2013.02.025
  5. Dogan, N., & Tanrikulu, Z. (2013). A comparative analysis of classification algorithms in data mining for accuracy, speed and robustness. Information Technology and Management, 14(2), 105-124. https://doi.org/10.1007/s10799-012-0135-8
  6. Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang, M. (2021). COSTE: Complexity-based OverSampling TEchnique to alleviate the class imbalance problem in software defect prediction. Information and Software Technology, 129, 106432. https://doi.org/10.1016/j.infsof.2020.106432
  7. George, G., Haas, M. R., & Pentland, A. (2014). Big data and management. Academy of management Journal, 57(2), 321-326. https://doi.org/10.5465/amj.2014.4002
  8. Ho, T. K. (2002). A data complexity analysis of comparative advantages of decision forest constructors. Pattern Analysis & Applications, 5(2), 102-112. https://doi.org/10.1007/s100440200009
  9. Ho, T. K., & Basu, M. (2002). Complexity measures of supervised classification problems. IEEE transactions on pattern analysis and machine intelligence, 24(3), 289-300. https://doi.org/10.1109/34.990132
  10. Huang, Y. M., Hung, C. M., & Jiau, H. C. (2006). Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem. Nonlinear Analysis: Real World Applications, 7(4), 720-747. https://doi.org/10.1016/j.nonrwa.2005.04.006
  11. Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM Sigkdd Explorations Newsletter, 6(1), 40-49. https://doi.org/10.1145/1007730.1007737
  12. Khan, I., Zhang, X., Rehman, M., & Ali, R. (2020). A literature survey and empirical study of meta-learning for classifier selection. IEEE Access, 8, 10262-10281. https://doi.org/10.1109/ACCESS.2020.2964726
  13. Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(3), 552-568. https://doi.org/10.1109/TSMCA.2010.2084081
  14. Kim, J., & Kwon, O. (2021). A model for rapid selection and covid-19 prediction with dynamic and imbalanced data. Sustainability, 13(6), 3099. https://doi.org/10.3390/su13063099
  15. Kim, E., & Hong, T. (2015). Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution. Journal of Intelligence and Information Systems, 21(1), 29-45. https://doi.org/10.13088/JIIS.2015.21.1.29
  16. Kim, J., Kim, M. Y., & Kwon, O. (2020). The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms. Journal of Intelligence and Information Systems, 26(1), 23-45. https://doi.org/10.13088/JIIS.2020.26.1.023
  17. Kotsiantis, S., & Kanellopoulos, D. (2006). Discretization techniques: A recent survey. GESTS International Transactions on Computer Science and Engineering, 32(1), 47-58.
  18. Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221-232. https://doi.org/10.1007/s13748-016-0094-0
  19. Lee, S., & Shin, T. (2018). Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm. Journal of Intelligence and Information Systems, 24(2), 111-124. https://doi.org/10.13088/JIIS.2018.24.2.111
  20. Leyva, E., Gonzalez, A., & Perez, R. (2014). A set of complexity measures designed for applying meta-learning to instance selection. IEEE Transactions on Knowledge and Data Engineering, 27(2), 354-367. https://doi.org/10.1109/TKDE.2014.2327034
  21. Lopez, V., Fernandez, A., Garcia, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information sciences, 250, 113-141. https://doi.org/10.1016/j.ins.2013.07.007
  22. Lorena, A. C., Maciel, A. I., de Miranda, P. B., Costa, I. G., & Prudencio, R. B. (2018). Data complexity meta-features for regression problems. Machine Learning, 107(1), 209-246. https://doi.org/10.1007/s10994-017-5681-1
  23. Lu, W. Z., & Wang, D. (2008). Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Science of the total environment, 395(2-3), 109-116. https://doi.org/10.1016/j.scitotenv.2008.01.035
  24. Matsumoto, A., Merlone, U., & Szidarovszky, F. (2012). Some notes on applying the Herfindahl-Hirschman Index. Applied Economics Letters, 19(2), 181-184. https://doi.org/10.1080/13504851.2011.570705
  25. Merz, P. (2004). Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation, 12(3), 303-325. https://doi.org/10.1162/1063656041774956
  26. Munoz, M. A., Sun, Y., Kirley, M., & Halgamuge, S. K. (2015). Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges. Information Sciences, 317, 224-245. https://doi.org/10.1016/j.ins.2015.05.010
  27. Park, G. U., & Jung, I. (2019). Comparison of resampling methods for dealing with imbalanced data in binary classification problem. The Korean Journal of Applied Statistics, 32(3), 349-374. https://doi.org/10.5351/KJAS.2019.32.3.349
  28. Pascual-Triana, J. D., Charte, D., Andres Arroyo, M., Fernandez, A., & Herrera, F. (2021). Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of balls metrics and singular problems prospect. Knowledge and Information Systems, 63(7), 1961-1989. https://doi.org/10.1007/s10115-021-01577-1
  29. Pasupa, K., Vatathanavaro, S., & Tungjitnob, S. (2020). Convolutional neural networks based focal loss for class imbalance problem: a case study of canine red blood cells morphology classification. Journal of Ambient Intelligence and Humanized Computing, 1-17.
  30. Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. G. (2000, June). Meta-Learning by Landmarking Various Learning Algorithms. In ICML (pp. 743-750).
  31. Pimentel, B. A., & De Carvalho, A. C. (2019). A new data characterization for selecting clustering algorithms using meta-learning. Information Sciences, 477, 203-219. https://doi.org/10.1016/j.ins.2018.10.043
  32. Qureshi, S. R., & Gupta, A. (2014, March). Towards efficient Big Data and data analytics: A review. In 2014 Conference on IT in Business, Industry and Government (CSIBIG) (pp. 1-6). IEEE.
  33. Rossi, A. L. D., de Leon Ferreira, A. C. P., Soares, C., & De Souza, B. F. (2014). MetaStream: A meta-learning based method for periodic algorithm selection in time-changing data. Neurocomputing, 127, 52-64. https://doi.org/10.1016/j.neucom.2013.05.048
  34. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.
  35. Sun, A., Lim, E. P., & Liu, Y. (2009). On strategies for imbalanced text classification using SVM: A comparative study. Decision Support Systems, 48(1), 191-201. https://doi.org/10.1016/j.dss.2009.07.011
  36. Van der Walt, C. M., & Barnard, E. (2007). Data characteristics that determine classifier performance. SAIEE Africa Research Journal, 98(3), 87-93. https://doi.org/10.23919/SAIEE.2007.9488132
  37. Weiss, G. M., & Provost, F. (2003). Learning when training data are costly: The effect of class distribution on tree induction. Journal of artificial intelligence research, 19, 315-354. https://doi.org/10.1613/jair.1199
  38. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82. https://doi.org/10.1109/4235.585893
  39. Zhang, X., Li, R., Zhang, B., Yang, Y., Guo, J., & Ji, X. (2019). An instance-based learning recommendation algorithm of imbalance handling methods. Applied Mathematics and Computation, 351, 204-218. https://doi.org/10.1016/j.amc.2018.12.020