참고문헌
- H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of -∆u =V (x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223-1253. https://doi.org/10.1080/03605309108820797
- K.-C. Chang, Methods in nonlinear analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.
- C.-C. Chen and C.-S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), no. 12, 1667-1727. https://doi.org/10.1002/cpa.10107
- F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
- W. Ding, J. Jost, J. Li, and G. Wang, Existence results for mean field equations, Ann. Inst. H. Poincare C Anal. Non Lineaire 16 (1999), no. 5, 653-666. https://doi.org/10.1016/S0294-1449(99)80031-6
- Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math. 10 (2008), no. 2, 205-220. https://doi.org/10.1142/S0219199708002776
- A. Grigor'yan, Y. Lin, and Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), no. 9, 4924-4943. https://doi.org/10.1016/j.jde.2016.07.011
- A. Grigor'yan, Y. Lin, and Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 92, 13 pp. https://doi.org/10.1007/s00526-016-1042-3
- A. Grigor'yan, Y. Lin, and Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), no. 7, 1311-1324. https://doi.org/10.1007/s11425-016-0422-y
- A. Huang, Y. Lin, and S.-T. Yau, Existence of solutions to mean field equations on graphs, Comm. Math. Phys. 377 (2020), no. 1, 613-621. https://doi.org/10.1007/s00220-020-03708-1
- Y. Y. Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), no. 2, 421-444. https://doi.org/10.1007/s002200050536
- Y. Lin and Y. Yang, A heat flow for the mean field equation on a finite graph, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 206, 15 pp. https://doi.org/10.1007/s00526-021-02086-3
- S. Liu and Y. Yang, Multiple solutions of Kazdan-Warner equation on graphs in the negative case, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 164, 15 pp. https://doi.org/10.1007/s00526-020-01840-3
- M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109-121.
- L. Sun and L. Wang, Brouwer degree for Kazdan-Warner equations on a connected finite graph, Adv. Math. 404 (2022), Paper No. 108422, 29 pp. https://doi.org/10.1016/j.aim.2022.108422
- X. Zhu, Mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs, J. Part. Diff. Eq. 35 (2022), no. 3, 199-207. https://doi.org/10.4208/jpde.v35.n3.1