참고문헌
- A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of λ-Kantorovich operators, J. Inequal. Appl., 2018 (2018), 202. https://doi.org/10.1186/s13660-018-1795-7
- A. Alotaibi, F. Ozger, S. A. Mohiuddine and M. A. Alghamdi, Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euler's beta function, Adv. Differ. Equ., 2021 (2021), 1-14. https://doi.org/10.1186/s13662-020-03162-2
- F. Altomare and M. Campiti, Korovkin-type approximation theory and its applications, 17, Walter de Gruyter, 2011.
- K. J. Ansari, F. Ozger and Z. Odemis Ozger, Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter lambda, Comp. Appl. Math., 41 (2022), 1-18. https://doi.org/10.1007/s40314-021-01695-0
- R. Aslan, Some approximation results on λ-Szasz-Mirakjan-Kantorovich operators, FUJMA, 4 (2021), 150-158. https://doi.org/10.33401/fujma.903140
- R. Aslan, Approximation by Szasz-Mirakjan-Durrmeyer operators based on shape parameter λ, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71 (2022), pp, 407-421. https://doi.org/10.31801/cfsuasmas.941919
- M. Ayman Mursaleen, A. Kilicman and Md. Nasiruzzaman, Approximation by q-BernsteinStancu-Kantorovich operators with shifted knots of real parameters, Filomat, 36(4) (2022), 1179-1194. https://doi.org/10.2298/FIL2204179A
- M. Ayman Mursaleen and S. Serra-Capizzano, Statistical convergence via q-calculus and a korovkin's type Approximation theorem, Axioms, 11 (2022), 70. https://doi.org/10.3390/axioms11020070
- Q. B. Cai, K. J. Ansari, M. Temizer Ersoy and F. Ozger, Statistical blending-type approximation by a class of operators that includes shape parameters λ and α, Mathematics, 10(7) (2022), 1149. https://doi.org/10.3390/math10071149
- Q. B. Cai and R. Aslan, On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 13 (2021), 1919. https://doi.org/10.3390/sym13101919
- Q. B. Cai and R. Aslan, Note on a new construction of Kantorovich form q-Bernstein operators related to shape parameter λ, Computer Modeling in Engineering & Sciences, 130 (2022), 1479-1493. https://doi.org/10.32604/cmes.2022.018338
- Q. B. Cai and W. T. Cheng, Convergence of λ-Bernstein operators based on (p, q)-integers, J. Inequal. Appl., 2020 (2020), 35. https://doi.org/10.1186/s13660-020-2309-y
- Q. B. Cai, A. Kilicman and M. Ayman Mursaleen, Approximation Properties and q-Statistical Convergence of Stancu-Type Generalized Baskakov-Szasz Operators, J. Funct. Spaces, 2022 (2022).
- Q. B. Cai, B. Y. Lian and G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. https://doi.org/10.1186/s13660-018-1653-7
- Q. B. Cai, G. Zhou and J. Li, Statistical approximation properties of λ-Bernstein operators based on q-integers, Open Math., 17 (2019), 487-498. https://doi.org/10.1515/math-2019-0039
- R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Heidelberg, 1993.
- G. Farin, Curves and surfaces for computer-aided geometric design: a practical guide, Elsevier, 2014.
- A. D. Gadzhiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogous to that of P.P. Korovkin, Dokl. Akad. Nauk., 218 (1974), 1001-1004.
- V. Gupta, Simultaneous approximation by Szasz-Durrmeyer operators, Math. Stud., 64 (1995), 27-36.
- M. K. Gupta, M. S. Beniwal and P. Goel, Rate of convergence for Szasz-Mirakyan-Durrmeyer operators with derivatives of bounded variation, Appl. Math. comput., 199 (2008), 828-832. https://doi.org/10.1016/j.amc.2007.10.036
- V. Gupta, M. A. Noor and M. S. Beniwal, Rate of convergence in simultaneous approximation for Szasz-Mirakyan-Durrmeyer operators, J. Math. Anal. Appl., 322 (2006), 964-970. https://doi.org/10.1016/j.jmaa.2005.09.063
- K. Khan, D. K. Lobiyal and A. Kilicman, Bezier curves and surfaces based on modified Bernstein polynomials, Azerb. J. Math., 9 (2019), 3-21.
- P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 90 (1953), 961-964.
- A. Kumar, Approximation properties of generalized λ-Bernstein-Kantorovich type operators, Rend. Circ. Mat. Palermo (2), 70 (2020), 505-520. https://doi.org/10.1007/s12215-020-00509-2
- S. Mazhar and V. Totik, Approximation by modified Szasz operators, Acta Sci. Math., 49 (1985), 257-269.
- G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, 31 (1941), 201-205.
- V. N. Mishra and R. B. Gandhi, A summation-integral type modification of Szasz-Mirakjan operators, Math. Methods Appl. Sci., 40 (2017), 175-182. https://doi.org/10.1002/mma.3977
- V. N. Mishra, R. B. Gandhi and R. N. Mohapatra, A summation-integral type modification of Szasz-Mirakjan-Stancu operators, J. Numer. Anal. Approx. Theory, 45 (2016), 27-36. https://doi.org/10.33993/jnaat451-1075
- V. N. Mishra, R. B. Gandhi and F. Nasaireh, Simultaneous approximation by Szasz-MirakjanDurrmeyer-type operators, Bollettino dell'Unione Matematica Italiana, 8 (2016), 297-305. https://doi.org/10.1007/s40574-015-0045-x
- M. Mursaleen, A. A. H. Al-Abied and M. A. Salman, Chlodowsky type (λ, q)-Bernstein-Stancu operators, Azerb. J. Math., 10 (2020), 75-101.
- M. Mursaleen, A. Alotaibi and K. J. Ansari, On a Kantorovich variant of-Szasz-Mirakjan operators, J. Funct. Spaces, 2016 (2016).
- H. Oruc and G. M. Phillips, q-Bernstein polynomials and Bezier curves, J. Comput. Appl. Math., 151 (2003), 1-12. https://doi.org/10.1016/S0377-0427(02)00733-1
- F. Ozger, Weighted statistical approximation properties of univariate and bivariate λKantorovich operators, Filomat, 33 (2019), 3473-3486. https://doi.org/10.2298/fil1911473o
- F. Ozger, Applications of generalized weighted statistical convergence to approximation theorems for functions of one and two variables, Numer. Funct. Anal. Optim., 41 (2020), 1990-2006. https://doi.org/10.1080/01630563.2020.1868503
- F. Ozger, On new Bezier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 376-393.
- F. Ozger, E. Aljimi and M. Temizer Ersoy, Rate of weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027
- F. Ozger, K. Demirci and S. Yildiz, Approximation by Kantorovich variant of λ-Schurer operators and related numerical results, In: Topics in Contemporary Mathematical Analysis and Applications, pp. 77-94, CRC Press, Boca Raton, 2020.
- Q. Qi, D. Guo and G. Yang, Approximation properties of λ-Szasz-Mirakian operators, Int. J. Eng. Res., 12 (2019), 662-669.
- S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of λ-Bernstein- Kantorovich operators with shifted knots, Math. Meth. Appl. Sci., 42 (2019), 4042-4053. https://doi.org/10.1002/mma.5632
- T. W. Sederberg, Computer Aided Geometric Design Course Notes, Department of Computer Science Brigham Young University, October 9, 2014.
- H. M. Srivastava, K. J. Ansari, F. Ozger and Z. Odemis Ozger, A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895. https://doi.org/10.3390/math9161895
- H. M. Srivastava, F. Ozger and S. A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bezier bases with shape parameter λ, Symmetry, 11 (2019), 316. https://doi.org/10.3390/sym11030316
- D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai Ser. Math.-Phys., 14 (1969), 31-45.
- O. Szasz, Generalization of the Bernstein polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45 (1950) 239-245. https://doi.org/10.6028/jres.045.024
- Z. Ye, X. Long and X. M. Zeng, Adjustment algorithms for Bezier curve and surface, In: International Conference on Computer Science and Education, pp, 1712-1716, 2010.