DOI QR코드

DOI QR Code

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz (Department of Integrated Biological Science, Pusan National University) ;
  • Mannaa, Mohamed (Department of Integrated Biological Science, Pusan National University) ;
  • Hewedy, Omar (Department of Plant Agriculture, University of Guelph) ;
  • Ali, Mostafa G. (Department of Botany and Microbiology, Faculty of Science, Benha University) ;
  • Jung, Hyejung (Department of Integrated Biological Science, Pusan National University) ;
  • Seo, Young-Su (Department of Integrated Biological Science, Pusan National University)
  • 투고 : 2022.07.07
  • 심사 : 2022.07.22
  • 발행 : 2022.10.01

초록

Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.

키워드

과제정보

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01574901)" from Rural Development Administration, Republic of Korea.

참고문헌

  1. Akami, M., Ren, X.-M., Qi, X., Mansour, A., Gao, B., Cao, S. and Niu, C.-Y. 2019. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera : Tephritidae). BMC Microbiol. 19:229.
  2. Aljbory, Z. and Chen, M.-S. 2018. Indirect plant defense against insect herbivores: a review. Insect Sci. 25:2-23. https://doi.org/10.1111/1744-7917.12436
  3. Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N. and Herre, E. A. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl. Acad. Sci. U. S. A. 100:15649-15654. https://doi.org/10.1073/pnas.2533483100
  4. Axtell, M. J. 2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137-159. https://doi.org/10.1146/annurev-arplant-050312-120043
  5. Baltrus, D. A. 2017. Adaptation, specialization, and coevolution within phytobiomes. Curr. Opin. Plant Biol. 38:109-116. https://doi.org/10.1016/j.pbi.2017.04.023
  6. Barr, K. L., Hearne, L. B., Briesacher, S., Clark, T. L. and Davis, G. E. 2010. Microbial symbionts in insects influence downregulation of defense genes in maize. PLoS ONE 5:e11339.
  7. Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. https://doi.org/10.1038/nature02874
  8. Berlec, A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci. 193-194:96-102. https://doi.org/10.1016/j.plantsci.2012.05.010
  9. Bing, X.-L., Zhao, D.-S., Peng, C.-W., Huang, H.-J. and Hong, X.-Y. 2020. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci. 27:947-963. https://doi.org/10.1111/1744-7917.12782
  10. Bonnet, E., Van de Peer, Y. and Rouze, P. 2006. The small RNA world of plants. New Phytol. 171:451-468. https://doi.org/10.1111/j.1469-8137.2006.01806.x
  11. Bottrell, D. G. and Schoenly, K. G. 2012. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to highly-yielding rice production in tropical Asia. J. Asia-Pac. Entomol. 15:122-140. https://doi.org/10.1016/j.aspen.2011.09.004
  12. Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.-J. and Sessitsch, A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 55:61-83. https://doi.org/10.1146/annurev-phyto-080516-035641
  13. Breidenbach, B., Pump, J., and Dumont, M. G. 2016. Microbial community structure in the rhizosphere of rice plants. Front. Microbiol. 6:1537.
  14. Buee, M., de Boer, W., Martin, F., van Overbeek, L. and Jurkevitch, E. 2009. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189-212. https://doi.org/10.1007/s11104-009-9991-3
  15. Carthew, R.W. and Sontheimer, E. J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642-655. https://doi.org/10.1016/j.cell.2009.01.035
  16. Carvalho, F. P. 2006. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9:685-692. https://doi.org/10.1016/j.envsci.2006.08.002
  17. Chang, Z.-X., Akinyemi, I. A., Guo, D.-Y. and Wu, Q. 2018. Characterization and comparative analysis of microRNAs in the rice pest Sogatella furcifera. PLoS ONE 13:e0204517.
  18. Chang, Z.-X., Tang, N., Wang, L., Zhang, L.-Q., Akinyemi, I. A. and Wu, Q.-F. 2016. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera. Insect Sci. 23:452-468. https://doi.org/10.1111/1744-7917.12343
  19. Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M. and Maity, S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int. J. Sci. Res. Publ. 3:1-8.
  20. Chen, C.-J., Liu, Q., Zhang, Y.-C., Qu, L.-H., Chen, Y.-Q. and Gautheret, D. 2011. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol. 8:538-547. https://doi.org/10.4161/rna.8.3.15199
  21. Chen, J., Li, T. C., Pang, R., Yue, X. Z., Hu, J. and Zhang, W. Q. 2018. Genome-wide screening and functional analysis reveal that the specific microRNA nlu-miR-173 regulates molting by targeting Ftz-F1 in Nilaparvata lugens. Front. Physiol. 9:1854.
  22. Chen, J., Liang, Z., Liang, Y., Pang, R. and Zhang, W. 2013. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 43:839-848. https://doi.org/10.1016/j.ibmb.2013.06.002
  23. Chen, M.-Y., Ye, W.-Y., Xiao, H.-M., Li, M.-Z., Cao, Z.-H.,Ye, X.-H., Zhao, X.-X., He, K. and Li, F. 2019. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus. J. Integr. Agric. 18:2814-2822. https://doi.org/10.1016/S2095-3119(19)62569-4
  24. Chen, Q., Lu, L., Hua, H., Zhou, F., Lu, L. and Lin, Y. 2012. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens). PLoS ONE 7:e32860.
  25. Cook, D. E., Mesarich, C. H. and Thomma, B. P. H. J. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541-563. https://doi.org/10.1146/annurev-phyto-080614-120114
  26. Dai, Z., Tan, J., Zhou, C., Yang, X., Yang, F., Zhang, S., Sun, S., Miao, X. and Shi, Z. 2019. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol. J. 17:1657-1669. https://doi.org/10.1111/pbi.13091
  27. Davis, T. S., Crippen, T. L., Hofstetter, R. W. and Tomberlin, J. K. 2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39:840-859. https://doi.org/10.1007/s10886-013-0306-z
  28. De Costa, D. M., Pinto, M. T. C., Geethanjalee, H. D. N. and Dissanayake, N. 2006. Suppression of rice pathogens by phyllosphere associated microflora of different rice varieties in Sri Lanka. Trop. Sci. 46:97-104. https://doi.org/10.1002/ts.63
  29. Ding, L.-J., Cui, H.-L., Nie, S.-A., Long, X.-E., Duan, G.-L. and Zhu, Y.-G. 2019. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. 95:fiz040.
  30. Engel, P. and Moran, N. A. 2013. The gut microbiota of insects: diversity in structure and function. FEMS Microbiol. Rev. 37:699-735. https://doi.org/10.1111/1574-6976.12025
  31. Feng, Q., Li, Y., Zhao, Z.-X. and Wang, W.-M. 2021. Contribution of small RNA pathway to interactions of rice with pathogens and insect pests. Rice 14:15.
  32. Franche, C., Lindstrom, K. and Elmerich, C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35-59. https://doi.org/10.1007/s11104-008-9833-8
  33. Golden, D. E., Gerbasi, V. R. and Sontheimer, E. J. 2008. An inside job for siRNAs. Mol. Cell 31:309-312. https://doi.org/10.1016/j.molcel.2008.07.008
  34. Gordon, J., Knowlton, N., Relman, D. A., Rohwer, F. and Youle, M. 2013. Superorganisms and holobionts. Microbe 8:152-153.
  35. Guo, W., Wu, G., Yan, F., Lu, Y., Zheng, H., Lin, L., Chen, H. and Chen, J. 2012. Identification of novel Oryza sativa miRNAs in deep sequencing-based small RNA libraries of rice infected with Rice stripe virus. PLoS ONE 7:e46443.
  36. Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M. and Whiteley, A. S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13:1642-1654. https://doi.org/10.1111/j.1462-2920.2011.02480.x
  37. Hardoim, P. R., van Overbeek, L. S. and van Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463-471. https://doi.org/10.1016/j.tim.2008.07.008
  38. Harsonowati, W., Astuti, R. I. and Wahyudi, A. T. 2017. Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. J. Gen. Plant Pathol. 83:98-108. https://doi.org/10.1007/s10327-017-0700-4
  39. Harun-Or-Rashid, M., Kim, H.-J., Yeom, S.-I., Yu, H.-A., Manir, M. M., Moon, S.-S., Kang, Y. J. and Chung, Y. R. 2018. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Front. Plant Sci. 9:1904.
  40. Huang, C.-Y., Wang, H., Hu, P., Hamby, R. and Jin, H. 2019. Small RNAs: big players in plant-microbe interactions. Cell Host Microbe 26:173-182. https://doi.org/10.1016/j.chom.2019.07.021
  41. Hudzik, C., Hou, Y., Ma, W. and Axtell, M. J. 2020. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 182:51-62. https://doi.org/10.1104/pp.19.00931
  42. Hussain, Q., Liu, Y., Zhang, A., Pan, G., Li, L., Zhang, X., Song, X., Cui, L. and Jin, Z. 2011. Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol. Ecol. 78:116-128. https://doi.org/10.1111/j.1574-6941.2011.01128.x
  43. Hussain, Q., Pan, G. X., Liu, Y. Z., Zhang, A., Li, L. Q., Zhang, X. H. and Jin, Z. J. 2012. Microbial community dynamics and function associatedwith rhizosphere over periods of rice growth. Plant Soil Environ. 58:55-61. https://doi.org/10.17221/390/2010-PSE
  44. Jiang, L., Bonkowski, M., Luo, L., Kardol, P., Zhang, Y., Chen, X., Li, D., Xiao, Z., Hu, F. and Liu, M. 2020. Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity. Biol. Fertil. Soils 56:1007-1022. https://doi.org/10.1007/s00374-020-01473-w
  45. Jiang, Y., Liang, Y., Li, C., Wang, F., Sui, Y., Suvannang, N., Zhou, J. and Sun, B. 2016. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95:250-261. https://doi.org/10.1016/j.soilbio.2016.01.007
  46. Jones, J. D. G., Vance, R. E. and Dangl, J. L. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395.
  47. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. and Timmermans, M. C. P. 2004. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84-88. https://doi.org/10.1038/nature02363
  48. Kettles, G. J., Drurey, C., Schoonbeek, H.-J., Maule, A. J. and Hogenhout, S. A. 2013. Resistance of A rabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol. 198:1178-1190. https://doi.org/10.1111/nph.12218
  49. Kim, H. and Lee, Y.-H. 2020. The rice microbiome: a model platform for crop holobiome. Phytobiomes J. 4:5-18. https://doi.org/10.1094/PBIOMES-07-19-0035-RVW
  50. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6:1378-1390. https://doi.org/10.1038/ismej.2011.192
  51. Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q. and Wei, T. 2016. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci. Rep. 6:20699.
  52. Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. L. and Jeon, C. O. 2015. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front. Microbiol. 6:639.
  53. Li, F., Hua, H., Ali, A. and Hou, M. 2019. Characterization of a bacterial symbiont Asaia sp. in the white-backed planthopper, Sogatella furcifera, and its effects on host fitness. Front. Microbiol. 10:2179.
  54. Li, T., Chen, J., Fan, X., Chen, W. and Zhang, W. 2017. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens. Pest Manag. Sci. 73:1529-1537. https://doi.org/10.1002/ps.4492
  55. Li, T.-P., Zha, S.-S., Zhou, C.-Y., Gong, J.-T., Zhu, Y.-X., Zhang, X., Xi, Z. and Hong, X.-Y. 2020. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol. Ecol. 96:fiaa194.
  56. Lindow, S. E. and Andersen, G. L. 1996. Influence of immigration on epiphytic bacterial populations on navel orange leaves. Appl. Environ. Microbiol. 62:2978-2987. https://doi.org/10.1128/aem.62.8.2978-2987.1996
  57. Liu, L., Zhang, K.-J., Rong, X., Li, Y.-Y. and Liu, H. 2019. Identification of Wolbachia-responsive miRNAs in the small brown planthopper, Laodelphax striatellus. Front. Physiol. 10:928.
  58. Liu, W., Zhang, X., Wu, N., Ren, Y. and Wang, X. 2020. High diversity and functional complementation of alimentary canal microbiota ensure small brown planthopper to adapt different biogeographic environments. Front. Microbiol. 10:2953.
  59. Lu, S., Sun, Y.-H. and Chiang, V. L. 2008. Stress-responsive microRNAs in Populus. Plant J. 55:131-151. https://doi.org/10.1111/j.1365-313X.2008.03497.x
  60. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  61. Mannaa, M. and Seo, Y.-S. 2021. Plants under the attack of allies: moving towards the plant pathobiome paradigm. Plants 10:125.
  62. Mayoral, J. G., Hussain, M., Joubert, D. A., Iturbe-Ormaetxe, I., O'Neill, S. L. and Asgari, S. 2014. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc Natl. Acad. Sci. U. S. A. 111:18721-18726. https://doi.org/10.1073/pnas.1420131112
  63. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663. https://doi.org/10.1111/1574-6976.12028
  64. Miller, D. L., Parish, A. J. and Newton, I. L. G. 2019. Transitions and transmission: behavior and physiology as drivers of honey bee-associated microbial communities. Curr. Opin. Microbiol. 50:1-7. https://doi.org/10.1016/j.mib.2019.08.001
  65. Miura, K., Ikeda, M., Matsubara, A., Song, X.-J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:545-549. https://doi.org/10.1038/ng.592
  66. Muller, T. and Ruppel, S. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 87:2-17. https://doi.org/10.1111/1574-6941.12198
  67. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J. D. G. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439. https://doi.org/10.1126/science.1126088
  68. Nevita, T., Sharma, G. D. and Pandey, P. 2018. Differences in rice rhizosphere bacterial community structure by application of lignocellulolytic plant-probiotic bacteria with rapid composting traits. Ecol. Eng. 120:209-221. https://doi.org/10.1016/j.ecoleng.2018.06.007
  69. Niu, D., Lii, Y. E., Chellappan, P., Lei, L., Peralta, K., Jiang, C., Guo, J., Coaker, G. and Jin, H. 2016. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat. Commun. 7:11324.
  70. Pathak, M. D. and Khan, Z. R. 1994. Insect pests of rice. International Rice Research Institute, Manila, Philippines. 89 pp.
  71. Peng, T., Lv, Q., Zhang, J., Li, J., Du, Y. and Zhao, Q. 2011. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J. Exp. Bot. 62:4943-4954. https://doi.org/10.1093/jxb/err205
  72. Qiao, L., Zheng, L., Sheng, C., Zhao, H., Jin, H. and Niu, D. 2020. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant J. 102:948-964. https://doi.org/10.1111/tpj.14677
  73. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361. https://doi.org/10.1007/s11104-008-9568-6
  74. Ren, G.-D., Zhu, J.-G. and Jia, Z.-J. 2014. Contrasting response patterns of rice phyllosphere bacterial taxa to elevated CO2. Pedosphere 24:544-552. https://doi.org/10.1016/S1002-0160(14)60040-0
  75. Rincon-Florez, V. A., Carvalhais, L. C. and Schenk, P. M. 2013. Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581-612. https://doi.org/10.3390/d5030581
  76. Salvador-Guirao, R., Hsing, Y.-I. and San Segundo, B. 2018. The polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2. Front. Plant Sci. 9:337.
  77. Sanchez-Canizares, C., Jorrin, B., Poole, P. S. and Tkacz, A. 2017. Understanding the holobiont: the interdependence of plants and their microbiome. Curr. Opin. Microbiol. 38:188-196. https://doi.org/10.1016/j.mib.2017.07.001
  78. Sattar, S. and Thompson, G. A. 2016. Small RNA regulators of plant-hemipteran interactions: micromanagers with versatile roles. Front. Plant Sci. 7:1241.
  79. Sazama, E. J., Ouellette, S. P. and Wesner, J. S. 2019. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 48:127-133. https://doi.org/10.1093/ee/nvy188
  80. Shah, A. Z., Ma, C., Zhang, Y., Zhang, Q., Xu, G. and Yang, G. 2022. Decoyinine induced resistance in rice against small brown planthopper Laodelphax striatellus. Insects 13:104.
  81. Shikano, I., Rosa, C., Tan, C.-W. and Felton, G. W. 2017. Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol. 55:313-331. https://doi.org/10.1146/annurev-phyto-080516-035319
  82. Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y. and Cao, X. 2012. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71:378-389.
  83. Song, Y., Shi, J., Xiong, Z., Shentu, X. and Yu, X. 2021. Three antimicrobials alter gut microbial communities and causing different mortality of brown planthopper, Nilaparvata lugens Stal. Pestic. Biochem. Physiol. 174:104806.
  84. Sun, W., Xu, X. H., Li, Y., Xie, L., He, Y., Li, W., Lu, X., Sun, H. and Xie, X. 2020. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol. 226:823-837. https://doi.org/10.1111/nph.16399
  85. Sun, Z., Liu, Z., Zhou, W., Jin, H., Liu, H., Zhou, A., Zhang, A. and Wang, M.-Q. 2016. Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Sci. Rep. 6:26043.
  86. Sunkar, R., Zhou, X., Zheng, Y., Zhang, W. and Zhu, J.-K. 2008. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8:25.
  87. Tan, J., Wu, Y., Guo, J., Li, H., Zhu, L., Chen, R., He, G. and Du, B. 2020. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. BMC Genomics 21:144.
  88. Tang, T., Zhang, Y., Cai, T., Deng, X., Liu, C., Li, J., He, S., Li, J. and Wan, H. 2021. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper, Nilaparvata lugens. J. Pest Sci. 94:757-767. https://doi.org/10.1007/s10340-020-01294-8
  89. Thapa, S., Ranjan, K., Ramakrishnan, B., Velmourougane, K. and Prasanna, R. 2018. Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J. Basic Microbiol. 58:172-186. https://doi.org/10.1002/jobm.201700402
  90. Tong, A., Yuan, Q., Wang, S., Peng, J., Lu, Y., Zheng, H., Lin, L., Chen, H., Gong, Y., Chen, J. and Yan, F. 2017. Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J. Exp. Bot. 68:4357-4367. https://doi.org/10.1093/jxb/erx230
  91. United Nations. 2005. World population prospects. The 2004 revision. Highlights. Population Division, Department of Economicand Social Affairs. United Nations, New York, USA. 91 pp.
  92. Urayama, S., Moriyama, H., Aoki, N., Nakazawa, Y., Okada, R., Kiyota, E., Miki, D., Shimamoto, K. and Fukuhara, T. 2010. Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol. 51:58-67. https://doi.org/10.1093/pcp/pcp167
  93. Ursell, L. K., Metcalf, J. L., Parfrey, L. W. and Knight, R. 2012. Defining the human microbiome. Nutr. Rev. 70(Suppl 1):S38-S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
  94. Van Ex, F., Jacob, Y. and Martienssen, R. A. 2011. Multiple roles for small RNAs during plant reproduction. Curr. Opin. Plant Biol. 14:588-593. https://doi.org/10.1016/j.pbi.2011.07.003
  95. Vijayakumar, M. M., More, R. P., Rangasamy, A., Gandhi, G. R., Muthugounder, M., Thiruvengadam, V., Samaddar, S., Jalali, S. K. and Sa, T. 2018. Gut bacterial diversity of insecticidesusceptible and -resistant nymphs of the brown planthopper Nilaparvata lugens Stal (Hemiptera: Delphacidae) and elucidation of their putative functional roles. J. Microbiol. Biotechnol. 28:976-986. https://doi.org/10.4014/jmb.1711.11039
  96. Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. 2016. Root exudation and rhizosphere biology. Plant Physiol. 132:44-51.
  97. Wang, J., Yao, W., Zhu, D., Xie, W. and Zhang, Q. 2015. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. eLife 4:e03913.
  98. Wang, Z.-L., Pan, H.-B, Wu, W., Li, M.-Y. and Yu, X.-P. 2021. The gut bacterial flora associated with brown planthopper is affected by host rice varieties. Arch. Microbiol. 203:325-333. https://doi.org/10.1007/s00203-020-02013-8
  99. Wang, Z.-L., Wang, T.-Z., Zhu, H.-F., Pan, H.-B. and Yu, X.-P. 2020. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. Insect Sci. 27:883-894. https://doi.org/10.1111/1744-7917.12729
  100. Wang, Z., Xia, Y., Lin, S., Wang, Y., Guo, B., Song, X., Ding, S., Zheng, L., Feng, R., Chen, S., Bao, Y., Sheng, C., Zhang, X., Wu, J., Niu, D., Jin, H. and Zhao, H. 2018. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J. 95:584-597. https://doi.org/10.1111/tpj.13972
  101. Wari, D., Alamgir, K. M., Mujiono, K., Hojo, Y., Tani, A., Shinya, T., Nakatani, H. and Galis, I. 2019a. Brown planthopper honeydew-associated symbiotic microbes elicit momilactones in rice. Plant Signal. Behav. 14:1655335.
  102. Wari, D., Kabir, M. A., Mujiono, K., Hojo, Y., Shinya, T., Tani, A., Nakatani, H. and Galis, I. 2019b. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J. Exp. Bot. 70:1683-1696. https://doi.org/10.1093/jxb/erz041
  103. Wei, L. Q., Yan, L. F. and Wang, T. 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol. 12:R53.
  104. Wei, T. and Li, Y. 2016. Rice reoviruses in insect vectors. Annu. Rev. Phytopathol. 54:99-120. https://doi.org/10.1146/annurev-phyto-080615-095900
  105. Wu, J., Yang, Z., Wang, Y., Zheng, L., Ye, R., Ji, Y., Zhao, S., Ji, S., Liu, R., Xu, L., Zheng, H., Zhou, Y., Zhang, X., Cao, X., Xie, L., Wu, Z., Qi, Y. and Li, Y. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4:e05733.
  106. Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C. and Qi, Y. 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell 38:465-475. https://doi.org/10.1016/j.molcel.2010.03.008
  107. Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H. and You, M. 2017. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front. Microbiol. 8:663.
  108. Xie, J., Peng, Y. and Xia, Y. 2021. Genome-wide identification and analysis of Nilaparvata lugens microRNAs during challenge with the entomopathogenic fungus Metarhizium anisopliae. J. Fungi 7:295.
  109. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E. and Carrington, J. C. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2:e104.
  110. Xu, D., Mou, G., Wang, K. and Zhou, G. 2014a. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice. Virus Res. 190:60-68. https://doi.org/10.1016/j.virusres.2014.07.007
  111. Xu, H.-X., Zheng, X.-S., Yang, Y.-J., Wang, X., Ye, G.-Y. and Lu, Z.-X. 2014b. Bacterial community in different populations of rice brown planthopper nilaparvata lugens (Stal). Rice Sci. 21:59-64. https://doi.org/10.1016/S1672-6308(13)60166-3
  112. Xu, L., Zhang, J., Zhan, A., Wang, Y., Ma, X., Jie, W., Cao, Z., Omar, M. A. A., He, K. and Li, F. 2020. Identification and analysis of microRNAs associated with wing polyphenism in the brown planthopper, Nilaparvata lugens. Int. J. Mol. Sci. 21:9754.
  113. Yan, X.-T., Ye, Z.-X., Wang, X., Zhang, C.-X., Chen, J.-P., Li, J.-M. and Huang, H.-J. 2021. Insight into different host range of three planthoppers by transcriptomic and microbiomic analysis. Insect Mol. Biol. 30:287-296. https://doi.org/10.1111/imb.12695
  114. Yan, Y., Zhang ,Y., Yang, K., Sun, Z., Fu, Y., Chen, X. and Fang, R. 2011. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J. 65:820-828. https://doi.org/10.1111/j.1365-313X.2010.04467.x
  115. Yang, M., Xu, Z., Zhao, W., Liu, Q., Li, Q., Lu, L., Liu, R., Zhang, X. and Cui, F. 2018. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC Plant Biol. 18:219.
  116. Ye, X., Xu, L., Li, X., He, K., Hua, H., Cao, Z., Xu, J., Ye, W., Zhang, J., Yuan, Z. and Li, F. 2019. MiR-34 modulates wing polyphenism in planthopper. PLoS Genet. 15:e1008235.
  117. Yu, C., Chen, Y., Cao, Y., Chen, H., Wang, J., Bi, Y.-M., Tian, F., Yang, F., Rothstein, S. J., Zhou, X. and He, C. 2018. Overex-pression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol. 59:1234-1247. https://doi.org/10.1093/pcp/pcy060
  118. Yu, H., Ji, R., Ye, W., Chen, H., Lai, W., Fu, Q. and Lou, Y. 2014. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS ONE 9:e88528.
  119. Yuan, C., Zhang, L., Hu, H., Wang, J., Shen, J. and He, J. 2018. The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J. Soils Sediments 18:1795-1805. https://doi.org/10.1007/s11368-018-1924-4
  120. Zeigler, R. S. and Barclay, A. 2008. The relevance of rice. Rice 1:3-10. https://doi.org/10.1007/s12284-008-9001-z
  121. Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., Shi, S., Liu, X., Zhao, S., Yang, Z., Wang, Y., Zheng, L., Wei, J., Du, Z., Zhang, A., Miao, H., Li, Y., Wu, Z. and Wu, J. 2016. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 9:1302-1314. https://doi.org/10.1016/j.molp.2016.06.014
  122. Zhang, J.-H., Yu, N., Xu, X.-X. and Liu, Z.-W. 2019. Community structure, dispersal ability and functional profiling of microbiome existing in fat body and ovary of the brown planthopper, Nilaparvata lugens. Insect Sci. 26:683-694. https://doi.org/10.1111/1744-7917.12575
  123. Zhang, W., Chen, J., Keyhani, N. O., Zhang, Z., Li, S. and Xia, Y. 2015. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 16:867.
  124. Zhang, X., Bao, Y., Shan, D., Wang, Z., Song, X., Wang, Z., Wang, J., He, L., Wu, L., Zhang, Z., Niu, D., Jin, H. and Zhao, H. 2018a. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiol. 177:352-368. https://doi.org/10.1104/pp.17.01665
  125. Zhang, X., Li, T.-P., Zhou, C.-Y., Zhao, D.-S., Zhu, Y.-X., Bing, X.-L., Huang, H.-J. and Hong, X.-Y. 2020. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus. Insect Sci. 27:895-907. https://doi.org/10.1111/1744-7917.12675
  126. Zhang, X., Zhao, H., Gao, S., Wang, W.-C., Katiyar-Agarwal, S., Huang, H.-D., Raikhel, N. and Jin, H. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42:356-366. https://doi.org/10.1016/j.molcel.2011.04.010
  127. Zhang, Y., Tang, T., Li, W., Cai, T., Li, J. and Wan, H. 2018b. Functional profiling of the gut microbiomes in two different populations of the brown planthopper, Nilaparvata lugens. J. Asia-Pac. Entomol. 21:1309-1314. https://doi.org/10.1016/j.aspen.2018.09.012
  128. Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., Liao, J.-Y., Wang, X.-J., Qu, L.-H., Chen, F., Xin, P., Yan, C., Chu, J., Li, H.-Q. and Chen, Y.-Q. 2013. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 31:848-852. https://doi.org/10.1038/nbt.2646
  129. Zhao, Z.-X., Feng, Q., Cao, X.-L., Zhu, Y., Wang, H., Chandran, V., Fan, J., Zhao, J.-Q., Pu, M., Li, Y. and Wang, W.-M. 2020. Osa-miR167d facilitates infection of Magnaporthe oryzae in rice. J. Integr. Plant Biol. 62:702-715. https://doi.org/10.1111/jipb.12816
  130. Zhou, G., Wang, T., Lou, Y., Cheng, J., Zhang, H. and Xu, J.-H. 2014. Identification and characterization of microRNAs in small brown planthopper (Laodephax striatellus) by nextgeneration sequencing. PLoS ONE 9:e103041.
  131. Zhu, Q.-H. and Helliwell, C. A. 2011. Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62:487-495. https://doi.org/10.1093/jxb/erq295