과제정보
This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01574901)" from Rural Development Administration, Republic of Korea.
참고문헌
- Akami, M., Ren, X.-M., Qi, X., Mansour, A., Gao, B., Cao, S. and Niu, C.-Y. 2019. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera : Tephritidae). BMC Microbiol. 19:229.
- Aljbory, Z. and Chen, M.-S. 2018. Indirect plant defense against insect herbivores: a review. Insect Sci. 25:2-23. https://doi.org/10.1111/1744-7917.12436
- Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N. and Herre, E. A. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl. Acad. Sci. U. S. A. 100:15649-15654. https://doi.org/10.1073/pnas.2533483100
- Axtell, M. J. 2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137-159. https://doi.org/10.1146/annurev-arplant-050312-120043
- Baltrus, D. A. 2017. Adaptation, specialization, and coevolution within phytobiomes. Curr. Opin. Plant Biol. 38:109-116. https://doi.org/10.1016/j.pbi.2017.04.023
- Barr, K. L., Hearne, L. B., Briesacher, S., Clark, T. L. and Davis, G. E. 2010. Microbial symbionts in insects influence downregulation of defense genes in maize. PLoS ONE 5:e11339.
- Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. https://doi.org/10.1038/nature02874
- Berlec, A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci. 193-194:96-102. https://doi.org/10.1016/j.plantsci.2012.05.010
- Bing, X.-L., Zhao, D.-S., Peng, C.-W., Huang, H.-J. and Hong, X.-Y. 2020. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci. 27:947-963. https://doi.org/10.1111/1744-7917.12782
- Bonnet, E., Van de Peer, Y. and Rouze, P. 2006. The small RNA world of plants. New Phytol. 171:451-468. https://doi.org/10.1111/j.1469-8137.2006.01806.x
- Bottrell, D. G. and Schoenly, K. G. 2012. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to highly-yielding rice production in tropical Asia. J. Asia-Pac. Entomol. 15:122-140. https://doi.org/10.1016/j.aspen.2011.09.004
- Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.-J. and Sessitsch, A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 55:61-83. https://doi.org/10.1146/annurev-phyto-080516-035641
- Breidenbach, B., Pump, J., and Dumont, M. G. 2016. Microbial community structure in the rhizosphere of rice plants. Front. Microbiol. 6:1537.
- Buee, M., de Boer, W., Martin, F., van Overbeek, L. and Jurkevitch, E. 2009. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189-212. https://doi.org/10.1007/s11104-009-9991-3
- Carthew, R.W. and Sontheimer, E. J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642-655. https://doi.org/10.1016/j.cell.2009.01.035
- Carvalho, F. P. 2006. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9:685-692. https://doi.org/10.1016/j.envsci.2006.08.002
- Chang, Z.-X., Akinyemi, I. A., Guo, D.-Y. and Wu, Q. 2018. Characterization and comparative analysis of microRNAs in the rice pest Sogatella furcifera. PLoS ONE 13:e0204517.
- Chang, Z.-X., Tang, N., Wang, L., Zhang, L.-Q., Akinyemi, I. A. and Wu, Q.-F. 2016. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera. Insect Sci. 23:452-468. https://doi.org/10.1111/1744-7917.12343
- Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M. and Maity, S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int. J. Sci. Res. Publ. 3:1-8.
- Chen, C.-J., Liu, Q., Zhang, Y.-C., Qu, L.-H., Chen, Y.-Q. and Gautheret, D. 2011. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol. 8:538-547. https://doi.org/10.4161/rna.8.3.15199
- Chen, J., Li, T. C., Pang, R., Yue, X. Z., Hu, J. and Zhang, W. Q. 2018. Genome-wide screening and functional analysis reveal that the specific microRNA nlu-miR-173 regulates molting by targeting Ftz-F1 in Nilaparvata lugens. Front. Physiol. 9:1854.
- Chen, J., Liang, Z., Liang, Y., Pang, R. and Zhang, W. 2013. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 43:839-848. https://doi.org/10.1016/j.ibmb.2013.06.002
- Chen, M.-Y., Ye, W.-Y., Xiao, H.-M., Li, M.-Z., Cao, Z.-H.,Ye, X.-H., Zhao, X.-X., He, K. and Li, F. 2019. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus. J. Integr. Agric. 18:2814-2822. https://doi.org/10.1016/S2095-3119(19)62569-4
- Chen, Q., Lu, L., Hua, H., Zhou, F., Lu, L. and Lin, Y. 2012. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens). PLoS ONE 7:e32860.
- Cook, D. E., Mesarich, C. H. and Thomma, B. P. H. J. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541-563. https://doi.org/10.1146/annurev-phyto-080614-120114
- Dai, Z., Tan, J., Zhou, C., Yang, X., Yang, F., Zhang, S., Sun, S., Miao, X. and Shi, Z. 2019. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol. J. 17:1657-1669. https://doi.org/10.1111/pbi.13091
- Davis, T. S., Crippen, T. L., Hofstetter, R. W. and Tomberlin, J. K. 2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39:840-859. https://doi.org/10.1007/s10886-013-0306-z
- De Costa, D. M., Pinto, M. T. C., Geethanjalee, H. D. N. and Dissanayake, N. 2006. Suppression of rice pathogens by phyllosphere associated microflora of different rice varieties in Sri Lanka. Trop. Sci. 46:97-104. https://doi.org/10.1002/ts.63
- Ding, L.-J., Cui, H.-L., Nie, S.-A., Long, X.-E., Duan, G.-L. and Zhu, Y.-G. 2019. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. 95:fiz040.
- Engel, P. and Moran, N. A. 2013. The gut microbiota of insects: diversity in structure and function. FEMS Microbiol. Rev. 37:699-735. https://doi.org/10.1111/1574-6976.12025
- Feng, Q., Li, Y., Zhao, Z.-X. and Wang, W.-M. 2021. Contribution of small RNA pathway to interactions of rice with pathogens and insect pests. Rice 14:15.
- Franche, C., Lindstrom, K. and Elmerich, C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35-59. https://doi.org/10.1007/s11104-008-9833-8
- Golden, D. E., Gerbasi, V. R. and Sontheimer, E. J. 2008. An inside job for siRNAs. Mol. Cell 31:309-312. https://doi.org/10.1016/j.molcel.2008.07.008
- Gordon, J., Knowlton, N., Relman, D. A., Rohwer, F. and Youle, M. 2013. Superorganisms and holobionts. Microbe 8:152-153.
- Guo, W., Wu, G., Yan, F., Lu, Y., Zheng, H., Lin, L., Chen, H. and Chen, J. 2012. Identification of novel Oryza sativa miRNAs in deep sequencing-based small RNA libraries of rice infected with Rice stripe virus. PLoS ONE 7:e46443.
- Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M. and Whiteley, A. S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13:1642-1654. https://doi.org/10.1111/j.1462-2920.2011.02480.x
- Hardoim, P. R., van Overbeek, L. S. and van Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463-471. https://doi.org/10.1016/j.tim.2008.07.008
- Harsonowati, W., Astuti, R. I. and Wahyudi, A. T. 2017. Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. J. Gen. Plant Pathol. 83:98-108. https://doi.org/10.1007/s10327-017-0700-4
- Harun-Or-Rashid, M., Kim, H.-J., Yeom, S.-I., Yu, H.-A., Manir, M. M., Moon, S.-S., Kang, Y. J. and Chung, Y. R. 2018. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Front. Plant Sci. 9:1904.
- Huang, C.-Y., Wang, H., Hu, P., Hamby, R. and Jin, H. 2019. Small RNAs: big players in plant-microbe interactions. Cell Host Microbe 26:173-182. https://doi.org/10.1016/j.chom.2019.07.021
- Hudzik, C., Hou, Y., Ma, W. and Axtell, M. J. 2020. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 182:51-62. https://doi.org/10.1104/pp.19.00931
- Hussain, Q., Liu, Y., Zhang, A., Pan, G., Li, L., Zhang, X., Song, X., Cui, L. and Jin, Z. 2011. Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol. Ecol. 78:116-128. https://doi.org/10.1111/j.1574-6941.2011.01128.x
- Hussain, Q., Pan, G. X., Liu, Y. Z., Zhang, A., Li, L. Q., Zhang, X. H. and Jin, Z. J. 2012. Microbial community dynamics and function associatedwith rhizosphere over periods of rice growth. Plant Soil Environ. 58:55-61. https://doi.org/10.17221/390/2010-PSE
- Jiang, L., Bonkowski, M., Luo, L., Kardol, P., Zhang, Y., Chen, X., Li, D., Xiao, Z., Hu, F. and Liu, M. 2020. Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity. Biol. Fertil. Soils 56:1007-1022. https://doi.org/10.1007/s00374-020-01473-w
- Jiang, Y., Liang, Y., Li, C., Wang, F., Sui, Y., Suvannang, N., Zhou, J. and Sun, B. 2016. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95:250-261. https://doi.org/10.1016/j.soilbio.2016.01.007
- Jones, J. D. G., Vance, R. E. and Dangl, J. L. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395.
- Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. and Timmermans, M. C. P. 2004. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84-88. https://doi.org/10.1038/nature02363
- Kettles, G. J., Drurey, C., Schoonbeek, H.-J., Maule, A. J. and Hogenhout, S. A. 2013. Resistance of A rabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol. 198:1178-1190. https://doi.org/10.1111/nph.12218
- Kim, H. and Lee, Y.-H. 2020. The rice microbiome: a model platform for crop holobiome. Phytobiomes J. 4:5-18. https://doi.org/10.1094/PBIOMES-07-19-0035-RVW
- Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6:1378-1390. https://doi.org/10.1038/ismej.2011.192
- Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q. and Wei, T. 2016. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci. Rep. 6:20699.
- Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. L. and Jeon, C. O. 2015. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front. Microbiol. 6:639.
- Li, F., Hua, H., Ali, A. and Hou, M. 2019. Characterization of a bacterial symbiont Asaia sp. in the white-backed planthopper, Sogatella furcifera, and its effects on host fitness. Front. Microbiol. 10:2179.
- Li, T., Chen, J., Fan, X., Chen, W. and Zhang, W. 2017. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens. Pest Manag. Sci. 73:1529-1537. https://doi.org/10.1002/ps.4492
- Li, T.-P., Zha, S.-S., Zhou, C.-Y., Gong, J.-T., Zhu, Y.-X., Zhang, X., Xi, Z. and Hong, X.-Y. 2020. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol. Ecol. 96:fiaa194.
- Lindow, S. E. and Andersen, G. L. 1996. Influence of immigration on epiphytic bacterial populations on navel orange leaves. Appl. Environ. Microbiol. 62:2978-2987. https://doi.org/10.1128/aem.62.8.2978-2987.1996
- Liu, L., Zhang, K.-J., Rong, X., Li, Y.-Y. and Liu, H. 2019. Identification of Wolbachia-responsive miRNAs in the small brown planthopper, Laodelphax striatellus. Front. Physiol. 10:928.
- Liu, W., Zhang, X., Wu, N., Ren, Y. and Wang, X. 2020. High diversity and functional complementation of alimentary canal microbiota ensure small brown planthopper to adapt different biogeographic environments. Front. Microbiol. 10:2953.
- Lu, S., Sun, Y.-H. and Chiang, V. L. 2008. Stress-responsive microRNAs in Populus. Plant J. 55:131-151. https://doi.org/10.1111/j.1365-313X.2008.03497.x
- Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Mannaa, M. and Seo, Y.-S. 2021. Plants under the attack of allies: moving towards the plant pathobiome paradigm. Plants 10:125.
- Mayoral, J. G., Hussain, M., Joubert, D. A., Iturbe-Ormaetxe, I., O'Neill, S. L. and Asgari, S. 2014. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc Natl. Acad. Sci. U. S. A. 111:18721-18726. https://doi.org/10.1073/pnas.1420131112
- Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663. https://doi.org/10.1111/1574-6976.12028
- Miller, D. L., Parish, A. J. and Newton, I. L. G. 2019. Transitions and transmission: behavior and physiology as drivers of honey bee-associated microbial communities. Curr. Opin. Microbiol. 50:1-7. https://doi.org/10.1016/j.mib.2019.08.001
- Miura, K., Ikeda, M., Matsubara, A., Song, X.-J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:545-549. https://doi.org/10.1038/ng.592
- Muller, T. and Ruppel, S. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 87:2-17. https://doi.org/10.1111/1574-6941.12198
- Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J. D. G. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439. https://doi.org/10.1126/science.1126088
- Nevita, T., Sharma, G. D. and Pandey, P. 2018. Differences in rice rhizosphere bacterial community structure by application of lignocellulolytic plant-probiotic bacteria with rapid composting traits. Ecol. Eng. 120:209-221. https://doi.org/10.1016/j.ecoleng.2018.06.007
- Niu, D., Lii, Y. E., Chellappan, P., Lei, L., Peralta, K., Jiang, C., Guo, J., Coaker, G. and Jin, H. 2016. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat. Commun. 7:11324.
- Pathak, M. D. and Khan, Z. R. 1994. Insect pests of rice. International Rice Research Institute, Manila, Philippines. 89 pp.
- Peng, T., Lv, Q., Zhang, J., Li, J., Du, Y. and Zhao, Q. 2011. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J. Exp. Bot. 62:4943-4954. https://doi.org/10.1093/jxb/err205
- Qiao, L., Zheng, L., Sheng, C., Zhao, H., Jin, H. and Niu, D. 2020. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant J. 102:948-964. https://doi.org/10.1111/tpj.14677
- Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361. https://doi.org/10.1007/s11104-008-9568-6
- Ren, G.-D., Zhu, J.-G. and Jia, Z.-J. 2014. Contrasting response patterns of rice phyllosphere bacterial taxa to elevated CO2. Pedosphere 24:544-552. https://doi.org/10.1016/S1002-0160(14)60040-0
- Rincon-Florez, V. A., Carvalhais, L. C. and Schenk, P. M. 2013. Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581-612. https://doi.org/10.3390/d5030581
- Salvador-Guirao, R., Hsing, Y.-I. and San Segundo, B. 2018. The polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2. Front. Plant Sci. 9:337.
- Sanchez-Canizares, C., Jorrin, B., Poole, P. S. and Tkacz, A. 2017. Understanding the holobiont: the interdependence of plants and their microbiome. Curr. Opin. Microbiol. 38:188-196. https://doi.org/10.1016/j.mib.2017.07.001
- Sattar, S. and Thompson, G. A. 2016. Small RNA regulators of plant-hemipteran interactions: micromanagers with versatile roles. Front. Plant Sci. 7:1241.
- Sazama, E. J., Ouellette, S. P. and Wesner, J. S. 2019. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 48:127-133. https://doi.org/10.1093/ee/nvy188
- Shah, A. Z., Ma, C., Zhang, Y., Zhang, Q., Xu, G. and Yang, G. 2022. Decoyinine induced resistance in rice against small brown planthopper Laodelphax striatellus. Insects 13:104.
- Shikano, I., Rosa, C., Tan, C.-W. and Felton, G. W. 2017. Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol. 55:313-331. https://doi.org/10.1146/annurev-phyto-080516-035319
- Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y. and Cao, X. 2012. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71:378-389.
- Song, Y., Shi, J., Xiong, Z., Shentu, X. and Yu, X. 2021. Three antimicrobials alter gut microbial communities and causing different mortality of brown planthopper, Nilaparvata lugens Stal. Pestic. Biochem. Physiol. 174:104806.
- Sun, W., Xu, X. H., Li, Y., Xie, L., He, Y., Li, W., Lu, X., Sun, H. and Xie, X. 2020. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol. 226:823-837. https://doi.org/10.1111/nph.16399
- Sun, Z., Liu, Z., Zhou, W., Jin, H., Liu, H., Zhou, A., Zhang, A. and Wang, M.-Q. 2016. Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Sci. Rep. 6:26043.
- Sunkar, R., Zhou, X., Zheng, Y., Zhang, W. and Zhu, J.-K. 2008. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8:25.
- Tan, J., Wu, Y., Guo, J., Li, H., Zhu, L., Chen, R., He, G. and Du, B. 2020. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. BMC Genomics 21:144.
- Tang, T., Zhang, Y., Cai, T., Deng, X., Liu, C., Li, J., He, S., Li, J. and Wan, H. 2021. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper, Nilaparvata lugens. J. Pest Sci. 94:757-767. https://doi.org/10.1007/s10340-020-01294-8
- Thapa, S., Ranjan, K., Ramakrishnan, B., Velmourougane, K. and Prasanna, R. 2018. Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J. Basic Microbiol. 58:172-186. https://doi.org/10.1002/jobm.201700402
- Tong, A., Yuan, Q., Wang, S., Peng, J., Lu, Y., Zheng, H., Lin, L., Chen, H., Gong, Y., Chen, J. and Yan, F. 2017. Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J. Exp. Bot. 68:4357-4367. https://doi.org/10.1093/jxb/erx230
- United Nations. 2005. World population prospects. The 2004 revision. Highlights. Population Division, Department of Economicand Social Affairs. United Nations, New York, USA. 91 pp.
- Urayama, S., Moriyama, H., Aoki, N., Nakazawa, Y., Okada, R., Kiyota, E., Miki, D., Shimamoto, K. and Fukuhara, T. 2010. Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol. 51:58-67. https://doi.org/10.1093/pcp/pcp167
- Ursell, L. K., Metcalf, J. L., Parfrey, L. W. and Knight, R. 2012. Defining the human microbiome. Nutr. Rev. 70(Suppl 1):S38-S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
- Van Ex, F., Jacob, Y. and Martienssen, R. A. 2011. Multiple roles for small RNAs during plant reproduction. Curr. Opin. Plant Biol. 14:588-593. https://doi.org/10.1016/j.pbi.2011.07.003
- Vijayakumar, M. M., More, R. P., Rangasamy, A., Gandhi, G. R., Muthugounder, M., Thiruvengadam, V., Samaddar, S., Jalali, S. K. and Sa, T. 2018. Gut bacterial diversity of insecticidesusceptible and -resistant nymphs of the brown planthopper Nilaparvata lugens Stal (Hemiptera: Delphacidae) and elucidation of their putative functional roles. J. Microbiol. Biotechnol. 28:976-986. https://doi.org/10.4014/jmb.1711.11039
- Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. 2016. Root exudation and rhizosphere biology. Plant Physiol. 132:44-51.
- Wang, J., Yao, W., Zhu, D., Xie, W. and Zhang, Q. 2015. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. eLife 4:e03913.
- Wang, Z.-L., Pan, H.-B, Wu, W., Li, M.-Y. and Yu, X.-P. 2021. The gut bacterial flora associated with brown planthopper is affected by host rice varieties. Arch. Microbiol. 203:325-333. https://doi.org/10.1007/s00203-020-02013-8
- Wang, Z.-L., Wang, T.-Z., Zhu, H.-F., Pan, H.-B. and Yu, X.-P. 2020. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. Insect Sci. 27:883-894. https://doi.org/10.1111/1744-7917.12729
- Wang, Z., Xia, Y., Lin, S., Wang, Y., Guo, B., Song, X., Ding, S., Zheng, L., Feng, R., Chen, S., Bao, Y., Sheng, C., Zhang, X., Wu, J., Niu, D., Jin, H. and Zhao, H. 2018. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J. 95:584-597. https://doi.org/10.1111/tpj.13972
- Wari, D., Alamgir, K. M., Mujiono, K., Hojo, Y., Tani, A., Shinya, T., Nakatani, H. and Galis, I. 2019a. Brown planthopper honeydew-associated symbiotic microbes elicit momilactones in rice. Plant Signal. Behav. 14:1655335.
- Wari, D., Kabir, M. A., Mujiono, K., Hojo, Y., Shinya, T., Tani, A., Nakatani, H. and Galis, I. 2019b. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J. Exp. Bot. 70:1683-1696. https://doi.org/10.1093/jxb/erz041
- Wei, L. Q., Yan, L. F. and Wang, T. 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol. 12:R53.
- Wei, T. and Li, Y. 2016. Rice reoviruses in insect vectors. Annu. Rev. Phytopathol. 54:99-120. https://doi.org/10.1146/annurev-phyto-080615-095900
- Wu, J., Yang, Z., Wang, Y., Zheng, L., Ye, R., Ji, Y., Zhao, S., Ji, S., Liu, R., Xu, L., Zheng, H., Zhou, Y., Zhang, X., Cao, X., Xie, L., Wu, Z., Qi, Y. and Li, Y. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4:e05733.
- Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C. and Qi, Y. 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell 38:465-475. https://doi.org/10.1016/j.molcel.2010.03.008
- Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H. and You, M. 2017. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front. Microbiol. 8:663.
- Xie, J., Peng, Y. and Xia, Y. 2021. Genome-wide identification and analysis of Nilaparvata lugens microRNAs during challenge with the entomopathogenic fungus Metarhizium anisopliae. J. Fungi 7:295.
- Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E. and Carrington, J. C. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2:e104.
- Xu, D., Mou, G., Wang, K. and Zhou, G. 2014a. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice. Virus Res. 190:60-68. https://doi.org/10.1016/j.virusres.2014.07.007
- Xu, H.-X., Zheng, X.-S., Yang, Y.-J., Wang, X., Ye, G.-Y. and Lu, Z.-X. 2014b. Bacterial community in different populations of rice brown planthopper nilaparvata lugens (Stal). Rice Sci. 21:59-64. https://doi.org/10.1016/S1672-6308(13)60166-3
- Xu, L., Zhang, J., Zhan, A., Wang, Y., Ma, X., Jie, W., Cao, Z., Omar, M. A. A., He, K. and Li, F. 2020. Identification and analysis of microRNAs associated with wing polyphenism in the brown planthopper, Nilaparvata lugens. Int. J. Mol. Sci. 21:9754.
- Yan, X.-T., Ye, Z.-X., Wang, X., Zhang, C.-X., Chen, J.-P., Li, J.-M. and Huang, H.-J. 2021. Insight into different host range of three planthoppers by transcriptomic and microbiomic analysis. Insect Mol. Biol. 30:287-296. https://doi.org/10.1111/imb.12695
- Yan, Y., Zhang ,Y., Yang, K., Sun, Z., Fu, Y., Chen, X. and Fang, R. 2011. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J. 65:820-828. https://doi.org/10.1111/j.1365-313X.2010.04467.x
- Yang, M., Xu, Z., Zhao, W., Liu, Q., Li, Q., Lu, L., Liu, R., Zhang, X. and Cui, F. 2018. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC Plant Biol. 18:219.
- Ye, X., Xu, L., Li, X., He, K., Hua, H., Cao, Z., Xu, J., Ye, W., Zhang, J., Yuan, Z. and Li, F. 2019. MiR-34 modulates wing polyphenism in planthopper. PLoS Genet. 15:e1008235.
- Yu, C., Chen, Y., Cao, Y., Chen, H., Wang, J., Bi, Y.-M., Tian, F., Yang, F., Rothstein, S. J., Zhou, X. and He, C. 2018. Overex-pression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol. 59:1234-1247. https://doi.org/10.1093/pcp/pcy060
- Yu, H., Ji, R., Ye, W., Chen, H., Lai, W., Fu, Q. and Lou, Y. 2014. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS ONE 9:e88528.
- Yuan, C., Zhang, L., Hu, H., Wang, J., Shen, J. and He, J. 2018. The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J. Soils Sediments 18:1795-1805. https://doi.org/10.1007/s11368-018-1924-4
- Zeigler, R. S. and Barclay, A. 2008. The relevance of rice. Rice 1:3-10. https://doi.org/10.1007/s12284-008-9001-z
- Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., Shi, S., Liu, X., Zhao, S., Yang, Z., Wang, Y., Zheng, L., Wei, J., Du, Z., Zhang, A., Miao, H., Li, Y., Wu, Z. and Wu, J. 2016. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 9:1302-1314. https://doi.org/10.1016/j.molp.2016.06.014
- Zhang, J.-H., Yu, N., Xu, X.-X. and Liu, Z.-W. 2019. Community structure, dispersal ability and functional profiling of microbiome existing in fat body and ovary of the brown planthopper, Nilaparvata lugens. Insect Sci. 26:683-694. https://doi.org/10.1111/1744-7917.12575
- Zhang, W., Chen, J., Keyhani, N. O., Zhang, Z., Li, S. and Xia, Y. 2015. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 16:867.
- Zhang, X., Bao, Y., Shan, D., Wang, Z., Song, X., Wang, Z., Wang, J., He, L., Wu, L., Zhang, Z., Niu, D., Jin, H. and Zhao, H. 2018a. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiol. 177:352-368. https://doi.org/10.1104/pp.17.01665
- Zhang, X., Li, T.-P., Zhou, C.-Y., Zhao, D.-S., Zhu, Y.-X., Bing, X.-L., Huang, H.-J. and Hong, X.-Y. 2020. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus. Insect Sci. 27:895-907. https://doi.org/10.1111/1744-7917.12675
- Zhang, X., Zhao, H., Gao, S., Wang, W.-C., Katiyar-Agarwal, S., Huang, H.-D., Raikhel, N. and Jin, H. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42:356-366. https://doi.org/10.1016/j.molcel.2011.04.010
- Zhang, Y., Tang, T., Li, W., Cai, T., Li, J. and Wan, H. 2018b. Functional profiling of the gut microbiomes in two different populations of the brown planthopper, Nilaparvata lugens. J. Asia-Pac. Entomol. 21:1309-1314. https://doi.org/10.1016/j.aspen.2018.09.012
- Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., Liao, J.-Y., Wang, X.-J., Qu, L.-H., Chen, F., Xin, P., Yan, C., Chu, J., Li, H.-Q. and Chen, Y.-Q. 2013. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 31:848-852. https://doi.org/10.1038/nbt.2646
- Zhao, Z.-X., Feng, Q., Cao, X.-L., Zhu, Y., Wang, H., Chandran, V., Fan, J., Zhao, J.-Q., Pu, M., Li, Y. and Wang, W.-M. 2020. Osa-miR167d facilitates infection of Magnaporthe oryzae in rice. J. Integr. Plant Biol. 62:702-715. https://doi.org/10.1111/jipb.12816
- Zhou, G., Wang, T., Lou, Y., Cheng, J., Zhang, H. and Xu, J.-H. 2014. Identification and characterization of microRNAs in small brown planthopper (Laodephax striatellus) by nextgeneration sequencing. PLoS ONE 9:e103041.
- Zhu, Q.-H. and Helliwell, C. A. 2011. Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62:487-495. https://doi.org/10.1093/jxb/erq295