과제정보
This study was carried out with the support of Cooperative Research Programs (Project No. PJ01505902) from Rural Development Administration, Republic of Korea.
참고문헌
- Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W. and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Front. Plant Sci. 6:16.
- Andersson, D. I. and Hughes, D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8:260-271. https://doi.org/10.1038/nrmicro2319
- Bereswill, S., Pahl, A., Bellemann, P., Zeller, W. and Geider, K. 1992. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl. Environ. Microbiol. 58:3522-3526. https://doi.org/10.1128/aem.58.11.3522-3526.1992
- Bonn, W. G. and van der Zwet, T. 2000. Distribution and economic importance of fire blight. In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 37-53. CAB International, Wallingford, UK.
- Calzolari, A., Finelli, F. and Mazzoli, G. L. 1999. A severe unforeseen outbreak of fire blight in the Emilia-romagna region. Acta Hortic. 489:171-176. https://doi.org/10.17660/ActaHortic.1999.489.26
- Collin, F., Karkare, S. and Maxwell, A. 2011. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 92:479-497. https://doi.org/10.1007/s00253-011-3557-z
- Eaves, D. J., Randall, L., Gray, D. T., Buckley, A., Woodward, M. J., White, A. P. and Piddock, L. J. V. 2004. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob. Agents Chemother. 48:4012-4015. https://doi.org/10.1128/AAC.48.10.4012-4015.2004
- Entenza, J. M., Giddey, M., Vouillamoz, J. and Moreillon, P. 2010. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int. Antimicrob. Agents 35:451-456. https://doi.org/10.1016/j.ijantimicag.2009.12.022
- Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., Gao, Y., Shi, N. and Duan, J. 2019. Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect. Drug Resist. 12:261-272. https://doi.org/10.2147/IDR.S182272
- Ham, H., Lee, K. J., Hong, S. J., Kong, H. G., Lee, M.-H., Kim, H.-R. and Lee, Y. H. 2020. Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Res. Plant Dis. 26:239-249 (in Korean). https://doi.org/10.5423/RPD.2020.26.4.239
- Hikichi, Y. 1993. Antibacterial activity of oxolinic acid on Pseudomonas glumae. Ann. Phytopathol. Soc. Jpn. 59:369-374. https://doi.org/10.3186/jjphytopath.59.369
- Hikichi, Y., Okuno, T. and Furusawa, I. 1994. Susceptibility of rice spikelets to infection with Pseudomonas glumae and its population dynamics. J. Pestic. Sci. 19:11-17. https://doi.org/10.1584/jpestics.19.11
- Horowitz, D. S. and Wang, J. C. 1987. Mapping the active site tyrosine of Escherichia coli DNA gyrase. J. Biol. Chem. 262:5339-5344. https://doi.org/10.1016/S0021-9258(18)61193-7
- Kang, I.-J., Park, D. H., Lee, Y.-K., Han, S.-W., Kwak, Y.-S. and Oh, C.-S. 2021. Complete genome sequence of Erwinia amylovora strain TS3128, a Korean strain isolated in an Asian pear orchard in 2015. Microbiol. Resour. Announc. 10:e00694-21.
- Kleitman, F., Shtienberg, D., Blachinsky, D., Oppenheim, D., Zilberstaine, M., Dror, O. and Manulis, S. 2005. Erwinia amylovora populations resistant to oxolinic acid in Israel: prevalence, persistence and fitness. Plant Pathol. 54:108-115. https://doi.org/10.1111/j.1365-3059.2005.01146.x
- Kumagai, Y., Kato, J.-I., Hoshino, K., Akasaka, T., Sato, K. and Ikeda, H. 1996. Quinolone-resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. Antimicrob. Agents Chemother. 40:710-714. https://doi.org/10.1128/AAC.40.3.710
- Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24:41-51 (in Korean). https://doi.org/10.5423/RPD.2018.24.1.41
- Levine, C., Hiasa, H. and Marians, K. J. 1998. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400:29-43. https://doi.org/10.1016/S0167-4781(98)00126-2
- Li, Z., Kelley, C., Collins, F., Rouse, D. and Morris, S. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177:1030-1035. https://doi.org/10.1086/515254
- Luo, N., Pereira, S., Sahin, O., Lin, J., Huang, S., Michel, L. and Zhang, Q. 2005. Enhanced in vivo fitness of fluoroquinoloneresistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. U. S. A. 102:541-546. https://doi.org/10.1073/pnas.0408966102
- Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2004. Implications of amino acid substitutions in gyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl. Environ. Microbiol. 70:5613-5620. https://doi.org/10.1128/AEM.70.9.5613-5620.2004
- Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2007. Amino acid substitutions in GyrA of Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants. Appl. Environ. Microbiol. 73:1114-1119. https://doi.org/10.1128/AEM.02400-06
- Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC WPRS Bull. 23:89-92.
- Manulis, S., Kleitman, F., Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M. and Shabi, E. 2003. Changes in the sensitivity of Erwinia amylovora populations to streptomycin and oxolinic acid in Israel. Plant Dis. 87:650-654. https://doi.org/10.1094/PDIS.2003.87.6.650
- McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101:192-204. https://doi.org/10.1094/PHYTO-04-10-0128
- McManus, P. S. and Jones, A. L. 1994. Epidemiology and genetic analysis of streptomycin-resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84:627-633. https://doi.org/10.1094/Phyto-84-627
- McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
- Melnyk, A. H., Wong, A. and Kassen, R. 2015. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8:273-283. https://doi.org/10.1111/eva.12196
- Momol, M. T., Norelli, J. L., Piccioni, D. E., Momol, E. A., Gustafson, H. L., Cummins, J. N. and Aldwinckle, H. S. 1998. Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis. 82:646-650. https://doi.org/10.1094/PDIS.1998.82.6.646
- Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87:756-765. https://doi.org/10.1094/PDIS.2003.87.7.756
- Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99:59-63.
- Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and Oh, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
- Paulander, W., Maisnier-Patin, S. and Andersson, D. I. 2009. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σs). Genetics 183:539-546. https://doi.org/10.1534/genetics.109.106104
- Pym, A. S., Saint-Joanis, B. and Cole, S. T. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70:4955-4960. https://doi.org/10.1128/IAI.70.9.4955-4960.2002
- Ruiz, J. 2003. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51:1109-1117. https://doi.org/10.1093/jac/dkg222
- Shabi, E. and Zutra, D. 1987. Outbreaks of fire blight in Israel in 1985 and 1986. Acta Hortic. 217:23-32. https://doi.org/10.17660/ActaHortic.1987.217.2
- Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M., Herzog, Z., Manulis, S. and Kritzman, G. 2003. Evaluation of local and imported fire blight warning systems in Israel. Phytopathology 93:356-363. https://doi.org/10.1094/PHYTO.2003.93.3.356
- Shtienberg, D., Zilberstaine, M., Oppenheim, D., Herzog, Z., Manulis, S., Shwartz, H. and Kritzman, G. 2001. Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica 29:143-154. https://doi.org/10.1007/BF02983958
- Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210. https://doi.org/10.20506/rst.31.1.2104
- Wong-Beringer, A., Wiener-Kronish, J., Lynch, S. and Flanagan, J. 2008. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 14:330-336. https://doi.org/10.1111/j.1469-0691.2007.01939.x
- Yonezawa, M., Takahata, M., Matsubara, N., Watanabe, Y. and Narita, H. 1995. DNA gyrase gyrA mutations in quinoloneresistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1970-1972. https://doi.org/10.1128/AAC.39.9.1970
- Yoshida, H., Bogaki, M., Nakamura, M. and Nakamura, S. 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34:1271-1272. https://doi.org/10.1128/AAC.34.6.1271