DOI QR코드

DOI QR Code

Survey of Oxolinic Acid-Resistant Erwinia amylovora in Korean Apple and Pear Orchards, and the Fitness Impact of Constructed Mutants

  • Ham, Hyeonheui (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Oh, Ga-Ram (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Dong Suk (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Yong Hoon (Division of Biotechnology, Jeonbuk National University)
  • 투고 : 2022.04.26
  • 심사 : 2022.08.09
  • 발행 : 2022.10.01

초록

Fire blight caused by Erwinia amylovora (Ea) is a devastating disease in apple and pear trees. Oxolinic acid (OA), a quinolone family antibiotic that inhibits DNA gyrase, has been employed to control fire blight in South Korea since 2015. The continuous use of this bactericide has resulted in the emergence of OA-resistant strains in bacterial pathogens in other countries. To investigate the occurrence of OA-resistant Ea strains in South Korea, we collected a total of 516 Ea isolates from diseased apple and pear trees in 2020-2021 and assessed their sensitivities to OA. We found that all isolates were susceptible to OA. To explore the possibility of emerging OA-resistant Ea by continuous application of OA, we exposed Ea stains to a range of OA concentrations and constructed OA-resistant mutant strains. Resistance was associated with mutations in the GyrA at codons 81 and 83, which result in glycine to cysteine and serine to arginine amino acid substitutions, respectively. The in vitro growth of the mutants in nutrient media and their virulence in immature apple fruits were lower than those of wild-type. Our results suggest that OA-resistance decreases the fitness of Ea. Future work should clarify the mechanisms by which OA-resistance decreases virulence of this plant pathogen. Continuous monitoring of OA-resistance in Ea is required to maintain the efficacy of this potent bactericide.

키워드

과제정보

This study was carried out with the support of Cooperative Research Programs (Project No. PJ01505902) from Rural Development Administration, Republic of Korea.

참고문헌

  1. Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W. and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Front. Plant Sci. 6:16.
  2. Andersson, D. I. and Hughes, D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8:260-271. https://doi.org/10.1038/nrmicro2319
  3. Bereswill, S., Pahl, A., Bellemann, P., Zeller, W. and Geider, K. 1992. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl. Environ. Microbiol. 58:3522-3526. https://doi.org/10.1128/aem.58.11.3522-3526.1992
  4. Bonn, W. G. and van der Zwet, T. 2000. Distribution and economic importance of fire blight. In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 37-53. CAB International, Wallingford, UK.
  5. Calzolari, A., Finelli, F. and Mazzoli, G. L. 1999. A severe unforeseen outbreak of fire blight in the Emilia-romagna region. Acta Hortic. 489:171-176. https://doi.org/10.17660/ActaHortic.1999.489.26
  6. Collin, F., Karkare, S. and Maxwell, A. 2011. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 92:479-497. https://doi.org/10.1007/s00253-011-3557-z
  7. Eaves, D. J., Randall, L., Gray, D. T., Buckley, A., Woodward, M. J., White, A. P. and Piddock, L. J. V. 2004. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob. Agents Chemother. 48:4012-4015. https://doi.org/10.1128/AAC.48.10.4012-4015.2004
  8. Entenza, J. M., Giddey, M., Vouillamoz, J. and Moreillon, P. 2010. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int. Antimicrob. Agents 35:451-456. https://doi.org/10.1016/j.ijantimicag.2009.12.022
  9. Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., Gao, Y., Shi, N. and Duan, J. 2019. Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect. Drug Resist. 12:261-272. https://doi.org/10.2147/IDR.S182272
  10. Ham, H., Lee, K. J., Hong, S. J., Kong, H. G., Lee, M.-H., Kim, H.-R. and Lee, Y. H. 2020. Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Res. Plant Dis. 26:239-249 (in Korean). https://doi.org/10.5423/RPD.2020.26.4.239
  11. Hikichi, Y. 1993. Antibacterial activity of oxolinic acid on Pseudomonas glumae. Ann. Phytopathol. Soc. Jpn. 59:369-374. https://doi.org/10.3186/jjphytopath.59.369
  12. Hikichi, Y., Okuno, T. and Furusawa, I. 1994. Susceptibility of rice spikelets to infection with Pseudomonas glumae and its population dynamics. J. Pestic. Sci. 19:11-17. https://doi.org/10.1584/jpestics.19.11
  13. Horowitz, D. S. and Wang, J. C. 1987. Mapping the active site tyrosine of Escherichia coli DNA gyrase. J. Biol. Chem. 262:5339-5344. https://doi.org/10.1016/S0021-9258(18)61193-7
  14. Kang, I.-J., Park, D. H., Lee, Y.-K., Han, S.-W., Kwak, Y.-S. and Oh, C.-S. 2021. Complete genome sequence of Erwinia amylovora strain TS3128, a Korean strain isolated in an Asian pear orchard in 2015. Microbiol. Resour. Announc. 10:e00694-21.
  15. Kleitman, F., Shtienberg, D., Blachinsky, D., Oppenheim, D., Zilberstaine, M., Dror, O. and Manulis, S. 2005. Erwinia amylovora populations resistant to oxolinic acid in Israel: prevalence, persistence and fitness. Plant Pathol. 54:108-115. https://doi.org/10.1111/j.1365-3059.2005.01146.x
  16. Kumagai, Y., Kato, J.-I., Hoshino, K., Akasaka, T., Sato, K. and Ikeda, H. 1996. Quinolone-resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. Antimicrob. Agents Chemother. 40:710-714. https://doi.org/10.1128/AAC.40.3.710
  17. Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24:41-51 (in Korean). https://doi.org/10.5423/RPD.2018.24.1.41
  18. Levine, C., Hiasa, H. and Marians, K. J. 1998. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400:29-43. https://doi.org/10.1016/S0167-4781(98)00126-2
  19. Li, Z., Kelley, C., Collins, F., Rouse, D. and Morris, S. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177:1030-1035. https://doi.org/10.1086/515254
  20. Luo, N., Pereira, S., Sahin, O., Lin, J., Huang, S., Michel, L. and Zhang, Q. 2005. Enhanced in vivo fitness of fluoroquinoloneresistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. U. S. A. 102:541-546. https://doi.org/10.1073/pnas.0408966102
  21. Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2004. Implications of amino acid substitutions in gyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl. Environ. Microbiol. 70:5613-5620. https://doi.org/10.1128/AEM.70.9.5613-5620.2004
  22. Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2007. Amino acid substitutions in GyrA of Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants. Appl. Environ. Microbiol. 73:1114-1119. https://doi.org/10.1128/AEM.02400-06
  23. Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC WPRS Bull. 23:89-92.
  24. Manulis, S., Kleitman, F., Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M. and Shabi, E. 2003. Changes in the sensitivity of Erwinia amylovora populations to streptomycin and oxolinic acid in Israel. Plant Dis. 87:650-654. https://doi.org/10.1094/PDIS.2003.87.6.650
  25. McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101:192-204. https://doi.org/10.1094/PHYTO-04-10-0128
  26. McManus, P. S. and Jones, A. L. 1994. Epidemiology and genetic analysis of streptomycin-resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84:627-633. https://doi.org/10.1094/Phyto-84-627
  27. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  28. Melnyk, A. H., Wong, A. and Kassen, R. 2015. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8:273-283. https://doi.org/10.1111/eva.12196
  29. Momol, M. T., Norelli, J. L., Piccioni, D. E., Momol, E. A., Gustafson, H. L., Cummins, J. N. and Aldwinckle, H. S. 1998. Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis. 82:646-650. https://doi.org/10.1094/PDIS.1998.82.6.646
  30. Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87:756-765. https://doi.org/10.1094/PDIS.2003.87.7.756
  31. Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99:59-63.
  32. Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and Oh, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
  33. Paulander, W., Maisnier-Patin, S. and Andersson, D. I. 2009. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σs). Genetics 183:539-546. https://doi.org/10.1534/genetics.109.106104
  34. Pym, A. S., Saint-Joanis, B. and Cole, S. T. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70:4955-4960. https://doi.org/10.1128/IAI.70.9.4955-4960.2002
  35. Ruiz, J. 2003. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51:1109-1117. https://doi.org/10.1093/jac/dkg222
  36. Shabi, E. and Zutra, D. 1987. Outbreaks of fire blight in Israel in 1985 and 1986. Acta Hortic. 217:23-32. https://doi.org/10.17660/ActaHortic.1987.217.2
  37. Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M., Herzog, Z., Manulis, S. and Kritzman, G. 2003. Evaluation of local and imported fire blight warning systems in Israel. Phytopathology 93:356-363. https://doi.org/10.1094/PHYTO.2003.93.3.356
  38. Shtienberg, D., Zilberstaine, M., Oppenheim, D., Herzog, Z., Manulis, S., Shwartz, H. and Kritzman, G. 2001. Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica 29:143-154. https://doi.org/10.1007/BF02983958
  39. Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210. https://doi.org/10.20506/rst.31.1.2104
  40. Wong-Beringer, A., Wiener-Kronish, J., Lynch, S. and Flanagan, J. 2008. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 14:330-336. https://doi.org/10.1111/j.1469-0691.2007.01939.x
  41. Yonezawa, M., Takahata, M., Matsubara, N., Watanabe, Y. and Narita, H. 1995. DNA gyrase gyrA mutations in quinoloneresistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1970-1972. https://doi.org/10.1128/AAC.39.9.1970
  42. Yoshida, H., Bogaki, M., Nakamura, M. and Nakamura, S. 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34:1271-1272. https://doi.org/10.1128/AAC.34.6.1271