DOI QR코드

DOI QR Code

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Received : 2022.08.29
  • Accepted : 2022.09.14
  • Published : 2022.09.30

Abstract

Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

Keywords

Acknowledgement

Following are results of a study on the "Leaders in INdustry-university Cooperation 3.0" Project, supported by the Ministry of Education and National Research Foundation of Korea.

References

  1. R. M. Gore, R. I. Silvers, K. H. Thakrar, D. R. Wenzke, U. K. Mehta, G. M. Newmark, and J. W. Berlin, "Bowel obstruction," Radiologic Clinics of North America, vol. 53, no. 6, pp. 1225-1240, Nov. 2015. DOI: 10.1016/j.rcl.2015.06.008.
  2. S. B. Williams, J. Greenspon, H. A. Young, and B. A. Orkin, "Small bowel obstruction: Conservative vs. surgical management," Diseases of the Colon & Rectum, vol. 48, no. 6, pp. 1140-1146, Apr. 2005. DOI: 10.1007/s10350-004-0882-7.
  3. S. Nicolaou, B. Kai, S. Ho, J. Su, and K. Ahamed, "Imaging of acute small-bowel obstruction," American Journal of Roentgenology, vol. 185, no. 4, pp. 1036-1044, Oct. 2005. DOI: 10.2214/AJR.04.0815.
  4. S. R. Reddy and M. S. Cappell, "A systematic review of the clinical presentation, diagnosis, and treatment of small bowel obstruction," Current Gastroenterology Reports, vol. 19, no. 6, pp. 28-41, Apr. 2017. DOI: 10.1007/s11894-017-0566-9.
  5. J. C. Lappas, B. L. Reyes, and D. D. Maglinte, "Abdominal radiography findings in small-bowel obstruction: Relevance to triage for additional diagnostic imaging," American Journal of Roentgenology, vol. 176, no. 1, pp. 167-174, Jan. 2001. DOI: 10.2214/ajr.176.1.1760167.
  6. D. D. T. Maglinte, D. E. Heitkamp, T. J. Howard, F. M. Kelvin, and J. C. Lappas, "Current concepts in imaging of small bowel obstruction," Radiologic Clinics North America, vol.41, no.2, pp. 263-283, Mar. 2003. DOI: 10.1016/s0033-8389(02)00114-8.
  7. E. K. Paulson and W. M. Thompson, "Review of small-bowel obstruction: The diagnosis and when to worry," Radiology, vol. 275, no. 2, pp. 332-342, May. 2015. DOI: 10.1148/radiol.15131519.
  8. W. M. Thompson, R. K. Kilani, B. B. Smith, J. Thomas, T. A. Jaffe, D. M. Delong, and E. K. Paulson, "Accuracy of abdominal radiography in acute small-bowel obstruction: Does reviewer experience matter?," American Journal of Roentgenology, vol. 188, no. 3, pp. W233-W238, Mar. 2007. DOI: 10.2214/AJR.06.0817.
  9. R. B. Jeffrey, Small bowel obstruction. Diagnostic imaging: abdomen, 2nd ed. Salt Lake City: UT, USA, pp. 44-47, 2010.
  10. S. Suri, S. Gupta, P. J. Sudhakar, N. K. Venkataramu, B. Sood, and J. D. Wig, "Comparative evaluation of plain films, ultrasound and CT in the diagnosis of intestinal obstruction," Acta radiologica, vol. 40, no. 4, pp. 422-428, Jan. 1999. DOI: 10.3109/02841859909177758.
  11. R. M. Gore and M. S. Levine, Textbook of gastrointestinal radiology, 3rd ed. Philadelphia, PA: Elsevier, 2008.
  12. H. I. Lee, B. C. Kim, H. W, Kim, S. U. Park, and K. B. Kim, "Ileus detection by using edge information and hough transform," in Proceedings of Fall Conference of Korea Institute of Information and Communication Engineering, vol. 21, no. 2, pp. 488-490, Oct. 2017.
  13. P. M. Cheng, T. K. Tejura, K. N. Tran, and G. Whang, "Detection of high-grade small bowel obstruction on conventional radiography with convolutional neural networks," Abdominal Radiology, vol. 43, no. 5, pp. 1120-1127, Aug. 2018. DOI: 10.1007/s00261-017-1294-1.
  14. E. Abdel-Maksoud, M. Elmogy, and R. Al-Awadi, "Brain tumor segmentation based on a hybrid clustering technique," Egyptian Informatics Journal, vol. 16, no. 1, pp. 71-81, Mar. 2015. DOI: 10.1016/j.eij.2015.01.003.
  15. A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: A review," ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264-323, Sep. 1999. DOI: 10.1145/331499.331504.
  16. V. P. Ananthi, P. Balasubramaniam, and T. Kalaiselvi, "A new fuzzy clustering algorithm for the segmentation of brain tumor," Soft Computing, vol. 20, no. 12, pp. 4859-4879, Jul. 2016. DOI: 10.1007/s00500-015-1775-5.
  17. J. Park, D. H. Song, H. Nho, H. M. Choi, K. A. Kim, H. J. Park, and K. B. Kim, "Automatic segmentation of brachial artery based on fuzzy C-means pixel clustering from ultrasound images," International Journal of Electrical and Computer Engineering, vol. 8, no. 2, pp. 638-643, Apr. 2018. DOI: 10.11591/ijece.v8i2.pp638-643.
  18. K. B. Kim, Y. S. Song, H. J. Park, D. H. Song, and B. K. Choi, "A fuzzy C-means quantization based automatic extraction of rotator cuff tendon tears from ultrasound images," Journal of Intelligent & Fuzzy Systems, vol. 35, no. 1, pp. 149-158, Jul. 2018. DOI: 10.3233/JIFS-169576.
  19. H. J. Lee, D. H. Song, and K. B. Kim, "Effective computer-assisted automatic cervical vertebrae extraction with rehabilitative ultrasound imaging by using K-means clustering," International Journal of Electrical and Computer Engineering, vol. 6, no. 6, pp. 2810-2817, Dec. 2016. DOI: 10.11591/ijece.v6i6.13268.
  20. M. A. Hussain, T. M. Ansari, P. S, Gawas, and N. N. Chowdhury, "Lung cancer detection using artificial neural network & fuzzy clustering," International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 3, pp. 360-363, Mar. 2015. DOI: 10.17148/IJARCCE.2015.4386.
  21. K. B. Kim, D. H. Song, and H. J. Park, "Automatic extraction of appendix from ultrasonography with self-organizing map and shape-brightness pattern learning," BioMed Research International, Apr. 2016. DOI: 10.1155/2016/5206268.
  22. Suryadibrata and K. B. Kim, "Ganglion cyst region extraction from ultrasound images using possibilistic C-means clustering method," Journal of information and communication convergence engineering, vol. 15, no. 1, pp. 49-52, Mar. 2017. DOI: 10.6109/jicce.2017.15.1.49.
  23. H. M. Moftah, A. T. Azar, E. T. Al-Shammari, N. I. Ghali, A. E. Hassanien, and M. Shoman, "Adaptive k-means clustering algorithm for MR breast image segmentation," Neural Computing and Applications, vol. 24, no. 7-8, pp. 1917-1928, Jun. 2014. DOI: 10.1007/s00521-013-1437-4.
  24. A. Chien, B. Dong, and Z. Shen, "Frame-based segmentation for medical images," Communications in Mathematical Sciences, vol. 9, no. 2, pp. 551-559, Dec. 2011. DOI: 10.4310/CMS.2011.v9.n2.a10.
  25. M. S. Yang, Y. J. Hu, K. C. Lin, C. C. Lin, "Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms," Magnetic Resonance Imaging, vol. 20, no. 2, pp. 173-179, Feb. 2002. DOI: 10.1016/S0730-725X(02)00477-0.
  26. K. B. Kim, H. J. Lee, D. H. Song, and Y. W. Woo, "Extracting fascia and analysis of muscles from ultrasound images with FCM-based quantization technology," Neural Network World, vol. 20, no. 3, pp. 405-416, 2010.
  27. K. S Chuang, H. L. Tzeng, S. Chen, J. Wu, and T. J. Chen, "Fuzzy c-means clustering with spatial information for image segmentation," Computerized Medical Imaging and Graphics, vol. 30, no. 1, pp.9-15, Jan. 2006. DOI: 10.1016/j.compmedimag.2005.10.001.
  28. H. Yu, J. Fan, and R. Lan, "Suppressed possibilistic c-means clustering algorithm," Applied Soft Computing, vol. 80, pp. 845-872, Jul. 2019. DOI: 10.1016/j.asoc.2019.02.027.
  29. W. Zeng, Y. Liu, H. Cui, R. Ma, and Z. Xub, "Interval possibilistic C-means algorithm and its application in image segmentation," Information Sciences, vol. 612, pp. 464-480, Oct. 2022. DOI: 10.1016/j.ins.2022.08.082.
  30. J. Park, D. H. Song, S. -S. Han, S. J. Lee, and K. B. Kim, "Automatic extraction of soft tissue tumor from ultrasonography using ART2 based intelligent image analysis," Current Medical Imaging, vol. 13, no. 4, pp. 447-453, Nov. 2017. DOI: 10.2174/1573405613666170504153002.