DOI QR코드

DOI QR Code

해양 와편모조류 Prorocentrum minimum 기원 신규 탄산무수화효소(CAs) 유전자 3종의 차등 pH 대응 발현

Differential Expression of Three Novel Carbonic Anhydrases (CAs) Genes in Marine Dinoflagellate Prorocentrum minimum Against Various pH Conditions

  • 신정민 (상명대학교 생명화학공학부 생명공학과) ;
  • 이하은 (상명대학교 생명화학공학부 생명공학과) ;
  • 김한솔 (상명대학교 생명화학공학부 생명공학과) ;
  • 기장서 (상명대학교 생명화학공학부 생명공학과)
  • Shin, Jeongmin (Department of Biotechnology, College of Biochemical Engineering, Sangmyung University) ;
  • Lee, Ha-Eun (Department of Biotechnology, College of Biochemical Engineering, Sangmyung University) ;
  • Kim, Han-Sol (Department of Biotechnology, College of Biochemical Engineering, Sangmyung University) ;
  • Ki, Jang-Seu (Department of Biotechnology, College of Biochemical Engineering, Sangmyung University)
  • 투고 : 2021.11.16
  • 심사 : 2021.12.07
  • 발행 : 2022.09.30

초록

Carbonic anhydrase (CA) is a key controller of the carbon concentrating mechanism (CCM), and is known to be affected by ambient pH and CO2 compositions. Herein, we characterized three novel CAs genes (PmCA1, 2, and 3) from the marine dinoflagellate Prorocentrum minimum, and evaluated the relative expressions of the PmCAs and photosynthetic genes PmatpB and PmrbcL under different pH conditions. Each PmCA was predicted to have amino acid residues constituting the zinc binding site. With signal peptide, PmCA1 and PmCA2 were predicted to be intracellular CAs located in the cytoplasm and chloroplast membrane, respectively. On the other hand, PmCA3 was predicted to be extracellular CA located in the plasma membrane. Also, PmCA1 was classified into the beta family, and PmCA2 and PmCA3 were classified into the alpha family via phylogenic analysis. The photosynthesis efficiency of P. minimum was similar at pH 7 to 9, and decreased significantly at pH 6 and pH 10. Overall, relative gene expression levels of the three PmCAs decreased at low pH, and increased as pH increased. Photosynthesis related genes, PmatpB and PmrbcL, showed similar expression patterns to those of PmCAs. These results suggest that changes in seawater pH may affect photosynthesis and CO2 metabolism in marine dinoflagellates.

키워드

과제정보

이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2C2013373).

참고문헌

  1. Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Lett 39(3):215-233 https://doi.org/10.1111/j.1574-6968.1986.tb01860.x
  2. Alvizo O, Nguyen LJ, Savile CK, Bresson JA, Lakhapatri SL, Solis EOP, Fox RJ, Broering JM, Benoit MR, Zimmerman SA, Novick SJ, Liang J, Lalonde JJ (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc Natl Acad Sci USA 111(46):16436-16441 https://doi.org/10.1073/pnas.1411461111
  3. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143-176 https://doi.org/10.1146/annurev-marine-120308-081121
  4. Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105(45):17442-17446 https://doi.org/10.1073/pnas.0804478105
  5. Badger MR (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609-622 https://doi.org/10.1093/jxb/erg076
  6. Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29(3):161-173 https://doi.org/10.1071/PP01213
  7. Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii: evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66(3):407-413 https://doi.org/10.1104/pp.66.3.407
  8. Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol 45(1):369-392 https://doi.org/10.1146/annurev.pp.45.060194.002101
  9. Barker S, Ridgwell A (2012) Ocean acidification. Nat Educ Knowl 3(10):21
  10. Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms and their regulation. Funct Plant Biol 29(3):335-347 https://doi.org/10.1071/PP01195
  11. Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae, vol 6. Springer, Cham, pp 89-99
  12. Bercovici A, Vellekoop J (2017) Methods in paleopalynology and palynostratigraphy: an application to the K-Pg boundary. An application to the K-Pg Boundary. In: Zeigler KE, Parker W (eds) Terrestrial depositional systems, vol 1. Elsevier, Amsterdam, pp 127-164
  13. Berge T, Daugbjerg N, Andersen BB, Hansen PJ (2010) Effect of lowered pH on marine phytoplankton growth rates. Mar Ecol-Prog Ser 416:79-91 https://doi.org/10.3354/meps08780
  14. Bobeszko T (2017) Characterisation of carbonic anhydrase in the symbiotic dinoflagellate Symbiodinium. Ph.D Thesis, James Cook University, Douglas, 184 p
  15. Boone CD, Gill S, Habibzadegan A, McKenna R (2013) Carbonic anhydrase: an efficient enzyme with possible global implications. Int J Chem Eng 2013:813931. doi:10.1155/2013/813931
  16. Boron WF (2004) Regulation of intracellular pH. Adv Physiol Educ 28(4):160-179 https://doi.org/10.1152/advan.00045.2004
  17. Capasso C, Supuran CT (2015) An overview of the alpha-, beta-and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 30(2):325-332 https://doi.org/10.3109/14756366.2014.910202
  18. Chiang TY, Schaal BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245-250
  19. Coleman JR, Grossman AR (1984) Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO2. Proc Natl Acad Sci USA 81(19):6049-6053 https://doi.org/10.1073/pnas.81.19.6049
  20. Costache TA, Acien Fernandez FG, Morales MM, FernandezSevilla JM, Stamatin I, Molina E (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol 97(17):7627-7637 https://doi.org/10.1007/s00253-013-5035-2
  21. DiMario RJ, Machingura MC, Waldrop GL, Moroney JV (2018) The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci 268:11-17 https://doi.org/10.1016/j.plantsci.2017.12.002
  22. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643-667 https://doi.org/10.1146/annurev.biochem.77.061606.160747
  23. Ebenezer V, Ki JS (2013a) Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol Environ Saf 92:129-134 https://doi.org/10.1016/j.ecoenv.2013.03.014
  24. Ebenezer V, Ki JS (2013b) Quantification of toxic effects of the herbicide metolachlor on marine microalgae Ditylum brightwellii (Bacillariophyceae), Prorocentrum minimum (Dinophyceae), and Tetraselmis suecica (Chlorophyceae). Microbiology 51(1):136-139
  25. Emameh RZ, Barker H, Tolvanen ME, Ortutay C, Parkkila S (2014) Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasite Vector 7(1):38. doi:10.1186/1756-3305-7-38
  26. Fukuzawa H, Tsuzuki M, Miyachi S (2000) Algal carbonic anhydrase. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases, vol 90. Birkhauser, Basel, pp 535-546
  27. Gattuso JP, Buddemeier RW (2000) Calcification and CO2. Nature 407(6802):311-313 https://doi.org/10.1038/35030280
  28. Gee CW, Niyogi KK (2017) The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc Natl Acad Sci USA 114(17):4537-4542 https://doi.org/10.1073/pnas.1700139114
  29. Gillham NW, Boynton JE (1986) The sequence of the chloroplast atpB gene and its flanking regions in Chlamydomonas reinhardtii. Gene 44(1):17-28 https://doi.org/10.1016/0378-1119(86)90038-7
  30. Goncalves AL, Simoes M, Pires JCM (2014) The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Convers Manag 85:530-536 https://doi.org/10.1016/j.enconman.2014.05.085
  31. Griffiths H, Meyer MT, Rickaby RE (2017) Overcoming adversity through diversity: aquatic carbon concentrating mechanisms. J Exp Bot 68(14):3689-3695 https://doi.org/10.1093/jxb/erx278
  32. Grzebyk D, Berland B (1996) Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. J Plankton Res 18(10):1837-1849 https://doi.org/10.1093/plankt/18.10.1837
  33. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea ( Cleve) Gran. Can J Microbiol 8(2):229-239 https://doi.org/10.1139/m62-029
  34. Guo R, Ebenezer V, Ki JS (2014) PmMGST3, a novel microsomal glutathione S-transferase gene in the dinoflagellate Prorocentrum minimum, is a potential biomarker of oxidative stress. Gene 546(2):378-385 https://doi.org/10.1016/j.gene.2014.05.046
  35. Guo R, Ebenezer V, Wang H, Ki JS (2017) Chlorine affects photosystem II and modulates the transcriptional levels of photosynthesis-related genes in the dinoflagellate Prorocentrum minimum. J Appl Phycol 29(1):153-163 https://doi.org/10.1007/s10811-016-0955-8
  36. Hansen P (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28:279-288 https://doi.org/10.3354/ame028279
  37. Harding Jr LW (1988) The time-course of photoadaptation to low-light in Prorocentrum mariae lebouriae (Dinophyceae) 1. J Phycol 24(2):274-281
  38. Harding Jr LW, Coats DW (1988) Photosynthetic physiology of Prorocentrum mariae-lebouriae (Dinophyceae) during its subpycnocline transport in Chesapeake Bay. J Phycol 24(1):77-89 https://doi.org/10.1111/j.1529-8817.1988.tb04458.x
  39. Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res 113(C4):C04028. doi:10.1029/2007JC004373
  40. Heil CA, Glibert PM, Fan C (2005) Prorocentrum minimum (Pavillard) Schiller: a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4(3):449-470 https://doi.org/10.1016/j.hal.2004.08.003
  41. Henry RP (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 58:523-538 https://doi.org/10.1146/annurev.ph.58.030196.002515
  42. Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiol 162(2):1142-1152 https://doi.org/10.1104/pp.113.217737
  43. Hopkinson BM, Young JN, Tansik AL, Binder BJ (2014) The minimal CO2-concentrating mechanism of Prochlorococcus spp. MED4 is effective and efficient. Plant Physiol 166(4):2205-2217 https://doi.org/10.1104/pp.114.247049
  44. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585-W587 https://doi.org/10.1093/nar/gkm259
  45. IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: Impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge and New York, pp 1-32
  46. Jeong HJ, Du Yoo Y, Kim JS, Seong KA, Kang NS, Kim TH (2010). Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45(2):65-91 https://doi.org/10.1007/s12601-010-0007-2
  47. Kim H, Wang H, Ki JS (2021) Chloroacetanilides inhibit photosynthesis and disrupt the thylakoid membranes of the dinoflagellate Prorocentrum minimum as revealed with metazachlor treatment. Ecotoxicol Environ Saf 211:111928 https://doi.org/10.1016/j.ecoenv.2021.111928
  48. Kim W, Park JM, Gim GH, Jeong SH, Kang CM, Kim DJ, Kim SW (2012) Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess Biosyst Eng 35(1-2):19-27 https://doi.org/10.1007/s00449-011-0612-1
  49. Kimpel DL, Togasaki RK, Miyachi S (1983) Carbonic anhydrase in Chlamydomonas reinhardtii I. Localization. Plant Cell Physiol 24(2):255-259 https://doi.org/10.1093/pcp/24.2.255
  50. Klein U, Salvador ML, Bogorad L (1994) Activity of the Chlamydomonas chloroplast rbcL gene promoter is enhanced by a remote sequence element. Proc Natl Acad Sci USA 91(23):10819-10823 https://doi.org/10.1073/pnas.91.23.10819
  51. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547-1549 https://doi.org/10.1093/molbev/msy096
  52. Kupriyanova E, Pronina N, Los D (2017) Carbonic anhydrase - A universal enzyme of the carbon-based life. Photosynthetica 55(1):3-19 https://doi.org/10.1007/s11099-017-0685-4
  53. Leggat W, Marendy EM, Baillie B, Whitney SM, Ludwig M, Badger MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29(3):309-322 https://doi.org/10.1071/PP01202
  54. Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74(1):1-20 https://doi.org/10.1016/S0163-7258(96)00198-2
  55. Mangan NM, Flamholz A, Hood RD, Milo R, Savage DF (2016) pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. Proc Natl Acad Sci USA 113(36):E5354-E5362
  56. Merrett MJ, Nimer NA, Dong LF (1996) The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant Cell Environ 19(4):478-484 https://doi.org/10.1111/j.1365-3040.1996.tb00340.x
  57. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41(3):445-501 https://doi.org/10.1111/j.1469-185X.1966.tb01501.x
  58. Moroney JV, Somanchi A (1999) How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol 119(1):9-16 https://doi.org/10.1104/pp.119.1.9
  59. Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6(8):1251-1259 https://doi.org/10.1128/EC.00064-07
  60. Mustaffa NIH, Striebel M, Wurl O (2017) Enrichment of extracellular carbonic anhydrase in the sea surface microlayer and its effect on air-sea CO2 exchange. Geophys Res Lett 44(24):12,324-12,330
  61. Nimer NA, Warren M, Merrett MJ (1998) The regulation of photosynthetic rate and activation of extracellular carbonic anhydrase under CO2-limiting conditions in the marine diatom Skeletonema costatum. Plant Cell Environ 21(8):805-812 https://doi.org/10.1046/j.1365-3040.1998.00321.x
  62. Oukarroum A, El Madidi S, Schansker G and Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60(3):438-446 https://doi.org/10.1016/j.envexpbot.2007.01.002
  63. Parry MA, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64(3):717-730 https://doi.org/10.1093/jxb/ers336
  64. Portner HO, Langenbuch M, Reipschlager A (2004) Biological impact of elevated ocean CO2 concentrations. lessons from animal physiology and earth history. J Oceanogr 60(4):705-718 https://doi.org/10.1007/s10872-004-5763-0
  65. Prabhu C, Wanjari S, Gawande S, Das S, Labhsetwar N, Kotwal S, Puri AK, Satyanarayana T, Rayalu S (2009) Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. J Mol Catal B Enzym 60(1-2):13-21 https://doi.org/10.1016/j.molcatb.2009.02.022
  66. Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005) Algae lacking carbon-concentrating mechanisms. Can J Bot 83(7):879-890 https://doi.org/10.1139/b05-074
  67. Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in Algae, vol 14. Springer, Dordrecht, pp 225-244
  68. Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121(2-3):111-124 https://doi.org/10.1007/s11120-013-9962-7
  69. Rickaby REM, Hubbard MRE (2019) Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radic Biol Med 140:295-304 https://doi.org/10.1016/j.freeradbiomed.2019.05.006
  70. Rost B, Richter KU, Riebesell ULF, Hansen PJ (2006) Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ 29(5):810-822 https://doi.org/10.1111/j.1365-3040.2005.01450.x
  71. Rowlett RS, Hoffmann KM, Failing H, Mysliwiec MM, Samardzic D (2010) Evidence for a bicarbonate "escort" site in Haemophilus influenzae β-carbonic anhydrase. Biochem 49(17):3640-3647 https://doi.org/10.1021/bi100328j
  72. Shimizu Y (1978) Dinoflagellate toxins. In: Scheuer PJ (ed) Marine natural products, vol 1. Academic Press, New York, pp 1-42
  73. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. Fems Microbiol Rev 24(4):335-366 https://doi.org/10.1111/j.1574-6976.2000.tb00546.x
  74. So AK, Meryl JM, George SE (2002) Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214(3):456-467 https://doi.org/10.1007/s004250100638
  75. Stein JL, Felbeck H (1993) Kinetic and physical properties of a recombinant RuBisCO from a chemoautotrophic endosymbiont. Mol Mar Biol Biotechnol 2(5):280-290
  76. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation, CRC Press, Florida, pp 445-483
  77. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in vatural waters. John Wiley & Sons, Toronto, 1040 p
  78. Suggett DJ, Warner ME, Leggat W (2017) Symbiotic dinoflagellate functional diversity mediates corals survival under ecological crisis. Trends Ecol Evol 32:735-745 https://doi.org/10.1016/j.tree.2017.07.013
  79. Supuran CT (2016) Structure and function of carbonic anhydrases. Biochem J 473(14):2023-2032 https://doi.org/10.1042/BCJ20160115
  80. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technol 102(3):3071-3076 https://doi.org/10.1016/j.biortech.2010.10.047
  81. Tuteja R (2005) Type I signal peptidase: an overview. Arch Biochem Biophys 441(2):107-111 https://doi.org/10.1016/j.abb.2005.07.013
  82. Tyler MA, Seliger HH (1981) Selection for a red tide organism: physiological responses to the physical environment 1, 2. Limnol Oceanogr 26(2):310-324 https://doi.org/10.4319/lo.1981.26.2.0310
  83. van Roosmalen ML, Geukens N, Jongbloed JD, Tjalsma H, Dubois JY, Bron S, van Dijl JM, Anne J (2004) Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta 1694(1-3):279-297 https://doi.org/10.1016/j.bbamcr.2004.05.006
  84. von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195-201 https://doi.org/10.1007/BF01868635
  85. Wang H, Guo R, Ki JS (2018) 6.0 K microarray reveals differential transcriptomic responses in the dinoflagellate Prorocentrum minimum exposed to polychlorinated biphenyl (PCB). Chemosphere 195:398-409 https://doi.org/10.1016/j.chemosphere.2017.12.066
  86. Wang X, Wang M, Jia Z, Qiu L, Wang L, Zhang A, Song L (2017) A Carbonic anhydrase serves as an important acid-base regulator in Pacific oyster Crassostrea gigas exposed to elevated CO2: implication for physiological responses of mollusk to ocean acidification. J Mar Biotechnol 19(1):22-35 https://doi.org/10.1007/s10126-017-9734-z
  87. Widdicombe S, Blackford JC, Spicer JI (2013) Assessing the environmental consequences of CO2 leakage from geological CCS: generating evidence to support environmental risk assessment. Mar Pollut Bull 73(2):399-401 https://doi.org/10.1016/j.marpolbul.2013.05.044
  88. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452(7183):56-61 https://doi.org/10.1038/nature06636
  89. Yamano T, Fukuzawa H (2009) Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microbiol 49(1):42-51 https://doi.org/10.1002/jobm.200800352