DOI QR코드

DOI QR Code

반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology

  • 최재형 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 이성찬 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 이준혁 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김경민 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 임동하 (한국생산기술연구원 친환경재료공정연구그룹)
  • Choi, Jae Hyung (Green Materials & Process R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Sung-Chan (Green Materials & Process R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Junhyeok (Green Materials & Process R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Gyeong-Min (Green Materials & Process R&D Group, Korea Institute of Industrial Technology) ;
  • Lim, Dong-Ha (Green Materials & Process R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2022.04.15
  • 심사 : 2022.06.13
  • 발행 : 2022.09.30

초록

최근 선진국들은 수소경제 및 탄소중립 사회로의 전환을 위해 수소에너지의 수요가 급격히 증가하고 있으며, 이산화탄소(CO2)를 배출이 없는 친환경적인 수소(H2) 생산 기술에 대한 관심이 높아지고 있다. 본 연구에서는 암모니아(NH3) 분해 수소 제조를 위해 루테늄 알루미나(Ru/Al2O3) 분말 촉매와 함께 알루미나 졸(alumina sol)의 무기바인더(inorganic binder)와 메틸 셀룰로오스(methyl cellulose)의 유기바인더(organic binder)를 사용하여 딥 코팅(dip coating) 방법으로 루테늄 알루미나 메탈 모노리스 코팅 촉매를 제조하였다. 딥 코팅을 위한 촉매 슬러리의 최적 비율로 촉매와 무기바인더의 중량 비율을 1:1로 고정하여 유기바인더 0.1일 때 1회 딥 코팅 시 촉매 코팅양은 61.6 g L-1이다. 이때 메탈모노리스 표면에 코팅된 촉매 층의 균일한 두께 (약 42 ㎛)와 결정상을 주사전자현미경(Scanning Electron Microscope, SEM)과 X-ray 회절분석(X ray diffraction, XRD)을 통해 확인하였다. 또한, 암모니아 분해 수소 제조의 최적 공정조건을 찾고자 반응표면분석법(Response Surface Method, RSM)을 이용하여 반응온도와 공간속도의 독립변수에 따른 암모니아 전환율에 대한 수치 최적화 회귀식 모델을 계산하였다. 이러한 결과로부터 암모니아 분해 수소생산을 위한 상업적 규모의 공정운전 기본설계 자료로 활용이 가능하다.

As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

키워드

과제정보

본 연구는 한국생산기술연구원 기관주요사업 "전주기적 자원 순환 대응 친환경 생산시스템 기술개발(3/6) (KITECH EO-22-0007)"과 "IMO 2020/2050 환경규제 대응을 위한 친환경선박 AI 기반 슈퍼클린 모듈화 플랫폼 기술 개발(1/5) (KITECH EH-22-0014)"의 지원으로 수행 되었습니다.

참고문헌

  1. Nikolaidis, P., and Poullikkas, A., "A Comparative Overview of Hydrogen Production Process," Renew. Sust. Energ. Rev., 67, 597-611 (2017). https://doi.org/10.1016/j.rser.2016.09.044
  2. Ryi, S. K., Han, J. Y., Kim, C. H., Lim, H. K., and Jung. H. Y., "Technical Trends of Hydrogen Production," Clean Technol., 23, 121-132 (2017).
  3. Ahmed, K., and Foger, K., "Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells," Catal. Today, 63, 479-487 (2000). https://doi.org/10.1016/S0920-5861(00)00494-6
  4. Levalley, T. L., Richard, A. R., and Fan, M., "The Progress in Water Gas Shift and Steam Reforming Hydrogen Production Technologies - A review," Int. J. Hydrog. Energy, 39, 16983-17000 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.041
  5. Lee, H., Woo, Y., and Lee, M. J., "The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality - Part I Background and Economic Feasibility of Expanding the Supply of Fuel Ammonia," J. Korean Soc. Combust., 26(1), 59-83 (2021). https://doi.org/10.15231/jksc.2021.26.1.059
  6. Cha, J., Jo, Y. S., Jeong, H., Han, J., Nam, S. W., Song, K. H., and Yoon, C. W., "Ammonia as an Efficient COX-free Hydrogen Carrier: Fundamentals and Feasibility Analyses for Fuel Cell Applications," Appl. Energy, 224, 194-204 (2018). https://doi.org/10.1016/j.apenergy.2018.04.100
  7. Le, T. A., Do, Q. C., Kim, Y., Kim, T.-W., and Chae, H.-J., "A Review on the Recent Developments of Ru and Ni Catalysts for NH3 Decomposition," Korean J. Chem. Eng., 38(6), 1087-1103 (2021). https://doi.org/10.1007/s11814-021-0767-7
  8. Bradford, M. C., Fanning, P. E., and Vannice, M. A., "Kinetics of NH3 Decomposition over Well Dispersed Ru," J. Catal., 172(2), 479-484 (1997). https://doi.org/10.1006/jcat.1997.1877
  9. Zhang, J., Xu, H., and Li, W., "Kinetic Study of NH3 Decomposition over Ni Nanoparticles: The Role of La Promoter, Structure Sensitivity and Compensation Effect," Appl. Catal. A-Gen., 296(2), 257-267 (2005). https://doi.org/10.1016/j.apcata.2005.08.046
  10. Ganley, J. C., Thomas, F. S., Seebauer, E. G., and Masel, R. I., "A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia," Catal. Letters, 96(3), 117-122 (2004). https://doi.org/10.1023/B:CATL.0000030108.50691.d4
  11. Yin, S. -F., Zhang, Q. -H., Xu, B. -Q., Zhu, W.- X., Ng, C. -F., and Au, C. -T., "Investigation on the Catalysis of COx-free Hydrogen Generation from Ammonia," J. Catal., 224(2), 384-396 (2004). https://doi.org/10.1016/j.jcat.2004.03.008
  12. Jacobsen, C. J. H., Dahl, S., Hansen, P. L., Tornqvist, E., Jensen, L., Topsoe, H., Prip, D. V, Moenshaug, P. B., and Chorkendorff, I., "Structure Sensitivity of Supported Ruthenium Catalysts for Ammonia Synthesis," J. Mol. Catal. A: Chem., 163(1), 19-26 (2000). https://doi.org/10.1016/S1381-1169(00)00396-4
  13. Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R. F., and Wu, G., "Low-temperature Ammonia Decomposition Catalysts for Hydrogen Generation," Appl. Catal. B, 226, 162-181 (2018). https://doi.org/10.1016/j.apcatb.2017.12.039
  14. Lucentini, I., Casanovas, A., and Llorca, J., "Catalytic Ammonia Decomposition for Hydrogen Production on Ni, Ru and NiRu Supported on CeO2." Int. J. Hydrog. Energy, 44(25), 12693-12707 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.154
  15. Lee, H. J., and Park, E. D., "Research Trends in Ammonia Decomposition Catalysts for H2 Synthesis," J. Energy Eng., 30(2), 8-19 (2021). https://doi.org/10.5855/ENERGY.2021.30.2.008
  16. Ryu, J. -H., Lee, K. -Y., La, H., and Kim, H. -J., "Ni Catalyst Wash-coated on Metal Monolith with Enhanced Heat-transfer Capability for Steam Reforming," J. Power Sources, 171(2), 499-505 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.107
  17. Xu, J., and Froment, G. F., "Methane Steam Reforming, Methanation and Water-Gas Shift I. Intrinsic Kinetics," AIChE J., 35, 88-89 (1989). https://doi.org/10.1002/aic.690350109
  18. Xu, Y., Ma, Y., Demura, M., and Hirano, T., "Enhanced Catalytic Activity of Ni3Al Foils towards Methane Steam Reforming by Water Vapor and Hydrogen Pretreatments," Int. J. Hydrog. Energy, 41(18), 7352-7362 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.103
  19. Palma, V., Ricca, A., Martino. M., and Meloni, E., "Innovative Structured Catalytic Systems for Methane Steam Reforming Intensification," Chem. Eng. Process.: Process Intensif., 120, 207-215 (2017). https://doi.org/10.1016/j.cep.2017.07.012
  20. Avila, P., Montes, M., and Miro, E. E., "Monolithic Reactors for Environmental Applications: A Review on Preparation Technologies," Chem. Eng. J., 109(1), 11-36 (2005). https://doi.org/10.1016/j.cej.2005.02.025
  21. Jia, J., Zhou, J., Zhang, J., and Yuan, Z., "The Influence of Preparative Parameters on the Adhesion of Alumina Washcoats Deposited on Metallic Supports," Appl. Surf. Sci., 253(23), 9099-9104 (2007). https://doi.org/10.1016/j.apsusc.2007.05.034
  22. Valentini, M., G. Groppi, Cristiani, C., and Levi, M., "The Deposition of γ-Al2O3 Layers on Ceramic and Metallic Supports for the Preparation of Structured Catalysts," Catal. Today, 69(1), 307-314 (2001). https://doi.org/10.1016/S0920-5861(01)00383-2
  23. Lee, C. -H., Choi, J. H., Kim, M. S., Seo, B. H., Kang, C. H., and Lim D. -H., "An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications," Clean Technol., 27(4), 332-340 (2021).
  24. Josefsson, H., Liu, F., Svensson, J. -E., Halvarsson, M., and Johansson, L. -G., "Oxidation of FeCrAl Alloys at 500-900 ℃ in Dry O2," Mater. Corros., 56(11), 801-805 (2005). https://doi.org/10.1002/maco.200503882
  25. Jeong, H., Kim, T., Im, E., and Lim, D. -H., "Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas," Clean Technol., 24(2), 127-134 (2018).
  26. Jeong, H., Jung, K., Hwang, S., and Lim, D. -H., "A New Feature of Metallic Foam Structured Catalyst Prepared by Slurry Coating for Selective Catalytic Reduction of Nitrogen Oxide with Ammonia," Nanosci. Nanotechnol. Lett., 10(9), 1257-1261 (2018). https://doi.org/10.1166/nnl.2018.2762
  27. Montebelli, A., Visconti, C. G., Groppi, G., Tronconi, E., Cristiani, C., Ferreira, C., and Kohler, S., "Methods for the Catalytic Activation of Metallic Structured Substrates," Catal. Sci. Technol., 4(9), 2846-2870 (2014). https://doi.org/10.1039/C4CY00179F
  28. Germani, G., Stefanescu, A., Schuurman, Y., and Veen, A., "Preparation and Characterization of Porous Alumina-based Catalyst Coatings in Microchannels," Chem. Eng. Sci., 62, 5084-5091 (2007). https://doi.org/10.1016/j.ces.2007.02.034
  29. Katheria, S., G. Deo, G., and Kunzru, D., "Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane," Energy Fuels, 31(3), 3143-3153 (2017). https://doi.org/10.1021/acs.energyfuels.6b03423
  30. Li, H., Wang, Y., Chen, X., Liu, S., Zhou, Y., Zhu, Q., Chen, Y., and Lu, H., "Preparation of Metallic Monolithic Pt/FeCrAl Fiber Catalyst by Suspension Spraying for VOCs Combustion," RSC Adv., 8(27), 14806-14811 (2018). https://doi.org/10.1039/C8RA01720D
  31. John, C. S., Alma, N. C. M., and Hays, G. R., "Characterization of Transitional Alumina by Solid-state Magic Angle Spinning Aluminium NMR," Appl. Catal.. 6, 341-346 (1983). https://doi.org/10.1016/0166-9834(83)80106-7
  32. Nagaoka, K., Eboshi, T., Takeishi, Y., Tasaki, R., Honda, K., Imamura, K., and Sato, K., "Carbon-free H2 Production from Ammonia Triggered at Room Temperature with an Acidic RuO2/γ-Al2O3 Catalyst," Sci. Adv., 3(4), e1602747 (2017). https://doi.org/10.1126/sciadv.1602747
  33. Ogura, Y., Sato, K., Miyahara, S. I., Kawano, Y., Toriyama, T., Yamamoto, T., and Nagaoka, K., "Efficient Ammonia Synthesis over a Ru/La0.5Ce0.5O1.75 Catalyst Pre-reduced at High Temperature," Chem. Sci., 9(8), 2230-2237 (2018). https://doi.org/10.1039/C7SC05343F
  34. Kim, Y. H., Kim, W. S., Kim, J. M., Choi, S., Jung, T. D., Lee, J. H., Kim, J. D., and Lee, O. H., "Optimization of Extraction Conditions for Mixture of Camellia sinensis L. and Artemisia argyi by Response Surface Methodology," J. Food Hyg. Saf., 31(4), 278-285 (2016). https://doi.org/10.13103/JFHS.2016.31.4.278
  35. Pham, H. D., Seon, J., Lee, S. C., Song, M., and Woo, H. C., "Maximization of Volatile Fatty Acids Production from Alginate in Acidogenesis," Bioresour. Technol., 148, 601-604 (2013). https://doi.org/10.1016/j.biortech.2013.08.128