DOI QR코드

DOI QR Code

Artificial Intelligence software evaluation plan

인공지능 소프트웨어 평가방안

  • Jung, Hye Jung (Dept. of Data Information & Statistics, Pyeong-Taek University)
  • 정혜정 (평택대학교 데이터정보학과)
  • Received : 2022.08.21
  • Accepted : 2022.09.20
  • Published : 2022.09.30

Abstract

Many studies have been conducted on software quality evaluation. Recently, as artificial intelligence-related software has been developed a lot, research on methods for evaluating artificial intelligence functions in existing software is being conducted. Software evaluation has been based on eight quality characteristics: functional suitability, reliability, usability, maintainability, performance efficiency, portability, compatibility, and security. Research on the part that needs to be confirmed through evaluation of the function of the intelligence part is in progress. This study intends to introduce the contents of the evaluation method in this part. We are going to propose a quality evaluation method for artificial intelligence software by presenting the existing software quality evaluation method and the part to be considered in the AI part.

소프트웨어 품질평가에 대해서는 많은 연구가 진행되어왔다. 최근에 인공지능 관련 소프트웨어들이 많이 개발되어지면서 기존 소프트웨어에 인공지능 기능을 평가하기 위한 방안에 대한 연구가 진행되어지고 있다. 소프트웨어 평가는 기능적합성(Functional suitability), 신뢰성(Reliability), 사용성(Usability), 유지보수성(Maintainability), 효율성(Performance efficiency), 이식성(Portability), 상호운영성(Compatibility), 보안성(Security)이란 8가지 품질 특성을 기반으로 평가 되어왔으나 인공지능 기능을 가지고 있는 소프트웨어의 경우는 8가지 품질 특성뿐만 아니라 인공지능 부분의 기능에 대해서 평가를 통해서 확인해야 하는 부분에 대한 연구가 진행되고 있다. 본 연구는 이 부분에서 평가 방안에 대한 내용을 소개하려 한다. 기존에 소프트웨어 품질 평가 방안과 인공지능 부분에서 고려해야 하는 부분에 대한 제시를 통해서 인공지능 소프트웨어의 품질 평가 방안을 제시하려 한다.

Keywords

References

  1. ISO/IEC 9126-2. (2003). Software Engineering - Product Quality -Part 2: Extenal metrics.
  2. ISO/IEC 25010. (2011). System and software engineering-System and software Quality Requirements and Evaluation(SQuaRE) -System and software quality model.
  3. ISO/IEC 25023. (2015). System and software engineering-System and software Quality Requirements and Evaluation(SQuaRE) - Measurment of system and software product quality.
  4. ISO/IEC 25000. (2005). System and software engineering: System and software Quality Requirements and Evaluation(SQuaRE) -Guide to SQuaRE.
  5. Jung, H. J., & Han, G. H. (2019).. The Software Reliability Growth Model base on Software Error Data, Journal of the Korea Convergence Society, 10(3), 59-66. DOI : 10.15207/JKCS.2019.10.3.059
  6. Jung, H. J. (2020). Text analysis of software test report, Journal of the Korea Convergence Society, 11(3), 59-66. DOI : 10.15207/JKCS.2020.11.11.025
  7. Goel, A. L., & Okumoto, K. (1979). Time dependent error-detection rate model for software reliavbility and other performance measures. IEEE Trans. Reliability, R-28, 206-211. https://doi.org/10.1109/TR.1979.5220566
  8. Jung, H. J. (2014). The Effect Analysis of Software Testing, The Journal of Digital Police & Management, 12(1), 371-377. DOI : 10.14400/JDPM.2014.12.1.371
  9. Jung, H. J. (2003). Performance Evaluation of Software Reliability Growth Model Using Plot of Fault Data, Korea Information Processing Society.
  10. Jung, H. J. (2018). Reliability measurement applied to software quality assessment metrics, The Journal of Multimedia.
  11. Jung, H. J. (2019). The software quality measurement based on software reliability model, Journal of the Korea Convergence Society, 10(4), 45-50. DOI : 10.15207/JKCS.2019.10.4.045
  12. Sin, J. E. (2012). 'Applied SPSS Statistics Analysis', Kyony Moon.
  13. Kang, S. W., & Yang, H. S. (2013). Quality Evaluation of Criterion Construction for Open Source Software, The Journal of Digital Police & Management, 11(2), 323-330. UCI : G704-002010.2013.11.2.005
  14. Kim, S. Y., Kim, Y. T., & Lee, S. J. (2015). Influence Comparison of Customer Satisfaction using Quantile Regression Model, The Journal of Digital Police & Management, 13(6), 125-132. DOI : 10.14400/JDC.2015.13.6.125
  15. Keon, W. I. (2010), Software Testing for Developer, STA.