DOI QR코드

DOI QR Code

Genetic localization of epicoccamide biosynthetic gene cluster in Epicoccum nigrum KACC 40642

  • Choi, Eun Ha (Department of Biological Sciences and Bioinformatics, Myongji University) ;
  • Park, Si-Hyung (Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University) ;
  • Kwon, Hyung-Jin (Department of Biological Sciences and Bioinformatics, Myongji University)
  • Received : 2022.07.05
  • Accepted : 2022.07.19
  • Published : 2022.09.30

Abstract

Epicoccum nigrum produces epipyrone A (orevactaene), a yellow polyketide pigment. Its biosynthetic gene cluster was previously characterized in E. nigrum KACC 40642. The YES liquid culture of this strain revealed high-level production of epicoccamide (EPC), with an identity that was determined using liquid chromatography-mass spectrometry analysis and molecular mass search using the SuperNatural database V2 webserver. The production of EPC was further confirmed by compound isolation and nuclear magnetic resonance spectroscopy. EPC is a highly reduced polyketide with tetramic acid and mannosyl moieties. The EPC structure guided us to localize the hypothetical EPC biosynthetic gene cluster (BGC) in E. nigrum ICMP 19927 genome sequence. The BGC contains genes encoding highly reducing (HR)-fungal polyketide synthase (fPKS)-nonribosomal peptide synthetase (NRPS), glycosyltransferase (GT), enoylreductase, cytochrome P450, and N-methyltrasnferase. Targeted inactivation of the HR-fPKS-NRPS and GT genes abolished EPC production, supporting the successful localization of EPC BGC. This study provides a platform to explore the hidden biological activities of EPC, a bolaamphiphilic compound.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B02009237).

References

  1. Braga RM, Padilla G, Araujo WL (2018) The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol 44: 759-778. doi: 10.1080/1040841X.2018.1514364
  2. Favaro LC, de Melo FL, Aguilar-Vildoso CI, Araujo WL (2011) Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One 6: e14828. doi:10.1371/journal.pone.0014828
  3. Fokin M, Fleetwood D, Weir BS, Villas-Boas S (2017) Genome sequence of the saprophytic ascomycete Epicoccum nigrum strain ICMP 19927, isolated from New Zealand. Genome Announc 5: e00557-17. doi: 10.1128/genomeA.00557-17
  4. Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5: 2010-2026. doi: 10.1039/b704420h
  5. Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Adv 3: 18228-18247. doi: 10.1039/C3RA42661K
  6. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47: W81-W87. doi: 10.1093/nar/gkz310
  7. Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K et al. (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11: 625-631. doi: 10.1038/nchembio.1890
  8. Lim YJ, Choi EH, Park SH, Kwon HJ (2020) Genetic localization of the orevactaene/epipyrone biosynthetic gene cluster in Epicoccum nigrum. Bioorg Med Chem Lett 30: 127242. doi: 10.1016/j.bmcl.2020.127242
  9. Choi EH, Park SH, Kwon HJ (2021) Cytochrome P450 and the glycosyltransferase genes are necessary for product release from epipyrone polyketide synthase in Epicoccum nigrum. J Appl Biol Chem 64: 225-236. doi: 10.3839/jabc.2021.032
  10. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48: 4688-4716. doi: 10.1002/anie.200806121
  11. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant Microbe Interact. 14: 580-584. doi: 10.1094/MPMI.2001.14.4.580
  12. Wright AD, Osterhage C, Konig GM (2003) Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org Biomol Chem 1: 507-510. doi: 10.1039/b208588g
  13. Wangun HV, Dahse HM, Hertweck C (2007) Epicoccamides B-D, glycosylated tetramic acid derivatives from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. J Nat Prod. 70: 1800-1803. doi:10.1021/np070245q
  14. Li H, Gilchrist CLM, Lacey HJ, Crombie A, Vuong D, Pitt JI, Lacey E, Chooi YH, Piggott AM (2019) Discovery and heterologous biosynthesis of the burnettramic acids: Rare PKS-NRPS-derived bolaamphiphilic pyrrolizidinediones from an Australian fungus, Aspergillus burnettii. Org Lett. 21:1287-1291. doi: 10.1021/acs.orglett.8b04042
  15. Wang CY, Wang BG, Wiryowidagdo S, Wray V, van Soest R, Steube KG, Guan HS, Proksch P, Ebel R (2003) Melophlins C-O, thirteen novel tetramic acids from the marine sponge Melophlus sarassinorum. J Nat Prod. 66:51-56. doi: 10.1021/np0202778
  16. Xu J, Hasegawa M, Harada K, Kobayashi H, Nagai H, Namikoshi M (2006) Melophlins P, Q, R, and S: four new tetramic acid derivatives, from two Palauan marine sponges of the genus Melophlus. Chem Pharm Bull (Tokyo). 54:852-854. doi: 10.1248/cpb.54.85