DOI QR코드

DOI QR Code

온라인 리뷰의 제목과 내용의 일치성이 리뷰 유용성에 미치는 영향

The Effect of Text Consistency between the Review Title and Content on Review Helpfulness

  • 이청용 (경희대학교 대학원 빅데이터응용학과) ;
  • 김재경 (경희대학교 대학원 빅데이터응용학과)
  • Li, Qinglong (Department of Big Data Analytics, Kyung Hee University) ;
  • Kim, Jaekyeong (Department of Big Data Analytics, Kyung Hee University)
  • 투고 : 2022.07.01
  • 심사 : 2022.08.16
  • 발행 : 2022.09.30

초록

많은 연구에서 온라인 리뷰 유용성에 영향을 미치는 다양한 요인을 발견하였다. 기존 연구에서는 주로 온라인 리뷰와 관련되는 정량적(예: 평점) 및 정서적(예: 감성점수) 요인이 리뷰 유용성에 미치는 영향을 조사했다. 온라인 리뷰는 제목과 내용을 동시에 포함하고 있지만, 기존 연구는 주로 리뷰 내용에 중점을 두고 있다. 그러나 리뷰 제목을 고려하지 않고 단순히 리뷰 내용만을 고려하면 리뷰 유용성에 영향을 미치는 요인을 조사할 때 한계가 존재한다. 이에 따라 리뷰 제목과 내용을 모두 고려하는 연구가 주목받고 있지만, 대부분의 연구는 리뷰 유용성에 대한 리뷰 내용과 제목의 영향을 독립적으로 조사하였다. 이는 리뷰 제목과 내용 간의 일치성이 리뷰 유용성에 미치는 잠재적인 영향을 간과할 수 있다. 따라서 본 연구에서는 단순 노출 효과 이론을 통해 리뷰 제목과 내용 간의 텍스트 일치성이 리뷰 유용성에 미치는 영향을 확인하고, 정보 선명성, 리뷰 길이 및 정보원 신뢰성의 역할도 고려하였다. 분석 결과, 리뷰 제목과 내용 간의 텍스트 일치성은 리뷰 유용성에 부정적인 영향을 미치는 것을 확인하였다. 또한, 정보 선명성과 정보원 신뢰성은 리뷰 유용성에 대한 텍스트 일치성의 부정적인 영향을 완화한다는 것을 발견했다.

Many studies have proposed several factors that affect review helpfulness. Previous studies have investigated the effect of quantitative factors (e.g., star ratings) and affective factors (e.g., sentiment scores) on review helpfulness. Online reviews contain titles and contents, but existing studies focus on the review content. However, there is a limitation to investigating the factors that affect review helpfulness based on the review content without considering the review title. However, previous studies independently investigated the effect of review content and title on review helpfulness. However, it may ignore the potential impact of similarity between review titles and content on review helpfulness. This study used text consistency between review titles and content affect review helpfulness based on the mere exposure effect theory. We also considered the role of information clearness, review length, and source reliability. The results show that text consistency between the review title and the content negatively affects the review helpfulness. Furthermore, we found that information clearness and source reliability weaken the negative effects of text consistency on review helpfulness.

키워드

과제정보

이 연구는 교육부 및 한국연구재단 4단계 두뇌한국21 사업(4단계 BK21 사업)과 2019학년도 경희대학교 연구비 지원에 의한 결과임(KHU-20191247).

참고문헌

  1. 이가은, 엄금철 (2022). 온라인 리뷰 콘텐츠와 언어 스타일이 리뷰 유용성에 미치는 영향. 지식경영연구, 23(2), 253-276. https://doi.org/10.15813/KMR.2022.23.2.013
  2. 이은주, 박도형 (2021). 평점이 수렴되지 않는 리뷰의 제품들이 더 좋을 수도 있을까?: 제품 리뷰평점의 분산과 소비자의 조절 초점 성향에 따른 소비자 태도 변화. 지식경영연구, 22(3), 273-293. https://doi.org/10.15813/KMR.2021.22.3.015
  3. 이중원, 박철 (2021). 글로벌 호텔시장에서 온라인 리뷰유용성에 영향을 미치는 요인에 관한 다수준 분석. 경영학연구, 50(3), 585-609.
  4. 이청용, 최사박, 신병규, 김재경 (2021). 온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구. Information Systems Review, 23(3), 51-75. https://doi.org/10.14329/isr.2021.23.3.051
  5. 이흠철, 윤효림, 이청용, 김재경 (2022). Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구. 지능정보연구, 28(2), 171-189. https://doi.org/10.13088/JIIS.2022.28.2.171
  6. 정희정, 이현애, 정남호, 구철모 (2018). 유용한 온라인 리뷰에서 어느 것이 더 중요한가? 휴리스틱-체계적 모델 관점. 지식경영연구, 19(4), 3-19.
  7. Aghakhani, N., Oh, O., Gregg, D. G., & Karimi, J. (2021). Online review consistency matters: An elaboration likelihood model perspective. Information Systems Frontiers, 23(5), 1287-1301. https://doi.org/10.1007/s10796-020-10030-7
  8. Ahmad, S. N., & Laroche, M. (2015). How do expressed emotions affect the helpfulness of a product review? Evidence from reviews using latent semantic analysis. International Journal of Electronic Commerce, 20(1), 76-111. https://doi.org/10.1080/10864415.2016.1061471
  9. Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers' objectives and review cues. International Journal of Electronic Commerce, 17(2), 99-126. https://doi.org/10.2753/jec1086-4415170204
  10. Biswas, B., Sengupta, P., Kumar, A., Delen, D., & Gupta, S. (2022). A critical assessment of consumer reviews: A hybrid NLP-based methodology. Decision Support Systems, 113799.
  11. Bornstein, R. F. (1989). Exposure and affect: Overview and meta-analysis of research, 1968-1987. Psychological Bulletin, 106(2), 265-289. https://doi.org/10.1037//0033-2909.106.2.265
  12. Bornstein, R. F., & D'agostino, P. R. (1992). Stimulus recognition and the mere exposure effect. Journal of Personality and Social Psychology, 63(4), 545-552. https://doi.org/10.1037/0022-3514.63.4.545
  13. Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the "helpfulness" of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521. https://doi.org/10.1016/j.dss.2010.11.009
  14. Choi, H. S., & Leon, S. (2020). An empirical investigation of online review helpfulness: A big data perspective. Decision Support Systems, 139, 113403. https://doi.org/10.1016/j.dss.2020.113403
  15. Chua, A. Y., & Banerjee, S. (2017). Analyzing review efficacy on Amazon. com: Does the rich grow richer? Computers in Human Behavior, 75, 501-509. https://doi.org/10.1016/j.chb.2017.05.047
  16. Dor, D. (2003). On newspaper headlines as relevance optimizers. Journal of Pragmatics, 35(5), 695-721. https://doi.org/10.1016/S0378-2166(02)00134-0
  17. Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270. https://doi.org/10.1016/j.jbusres.2014.11.006
  18. Han, M. M. (2022). How does mobile device usage influence review helpfulness through consumer evaluation? Evidence from TripAdvisor. Decision Support Systems, 153, 113682. https://doi.org/10.1016/j.dss.2021.113682
  19. Heng, Y., Gao, Z., Jiang, Y., & Chen, X. (2018). Exploring hidden factors behind online food shopping from Amazon reviews: A topic mining approach. Journal of Retailing and Consumer Services, 42, 161-168. https://doi.org/10.1016/j.jretconser.2018.02.006
  20. Hlee, S., Lee, J., Yang, S. B., & Koo, C. (2019). The moderating effect of restaurant type on hedonic versus utilitarian review evaluations. International Journal of Hospitality Management, 77, 195-206. https://doi.org/10.1016/j.ijhm.2018.06.030
  21. Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214. https://doi.org/10.1007/s10799-008-0041-2
  22. Huang, A. H., Chen, K., Yen, D. C., & Tran, T. P. (2015). A study of factors that contribute to online review helpfulness. Computers in Human Behavior, 48, 17-27. https://doi.org/10.1016/j.chb.2015.01.010
  23. Lee, M., Jeong, M., & Lee, J. (2017). Roles of negative emotions in customers' perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach. International Journal of Contemporary Hospitality Management, 29(2), 762-783. https://doi.org/10.1108/IJCHM-10-2015-0626
  24. Lee, S., & Choeh, J. Y. (2016). The determinants of helpfulness of online reviews. Behaviour & Information Technology, 35(10), 853-863. https://doi.org/10.1080/0144929X.2016.1173099
  25. Lee, S., Lee, S., & Baek, H. (2021). Does the dispersion of online review ratings affect review helpfulness? Computers in Human Behavior, 117, 106670. https://doi.org/10.1016/j.chb.2020.106670
  26. Li, C., Kwok, L., Xie, K. L., Liu, J., & Ye, Q. (2021). Let photos speak: The effect of user-generated visual content on hotel review helpfulness. Journal of Hospitality & Tourism Research. https://doi.org/10.1177/10963480211019113
  27. Li, L., Lee, K. Y., Lee, M., & Yang, S. B. (2020). Unveiling the cloak of deviance: Linguistic cues for psychological processes in fake online reviews. International Journal of Hospitality Management, 87, 102468. https://doi.org/10.1016/j.ijhm.2020.102468
  28. Li, S. T., Pham, T. T., & Chuang, H. C. (2019). Do reviewers' words affect predicting their helpfulness ratings? Locating helpful reviewers by linguistics styles. Information & Management, 56(1), 28-38. https://doi.org/10.1016/j.im.2018.06.002
  29. Li, Y., & Xie, Y. (2020). Is a picture worth a thousand words? An empirical study of image content and social media engagement. Journal of Marketing Research, 57(1), 1-19. https://doi.org/10.1177/0022243719881113
  30. Lin, T. M., Lu, K. Y., & Wu, J. J. (2012). The effects of visual information in eWOM communication. Journal of Research in Interactive Marketing, 6(1), 7-26. https://doi.org/10.1108/17505931211241341
  31. Ma, X., Khansa, L., Deng, Y., & Kim, S. S. (2013). Impact of prior reviews on the subsequent review process in reputation systems. Journal of Management Information Systems, 30(3), 279-310. https://doi.org/10.2753/MIS0742-1222300310
  32. Ma, Y., Xiang, Z., Du, Q., & Fan, W. (2018). Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71, 120-131. https://doi.org/10.1016/j.ijhm.2017.12.008
  33. McGinnies, E., & Ward, C. D. (1980). Better liked than right: Trustworthiness and expertise as factors in credibility. Personality and Social Psychology Bulletin, 6(3), 467-472. https://doi.org/10.1177/014616728063023
  34. Mitra, S., & Jenamani, M. (2021). Helpfulness of online consumer reviews: A multi-perspective approach. Information Processing & Management, 58(3), 102538. https://doi.org/10.1016/j.ipm.2021.102538
  35. Mohammad, A. S., Jaradat, Z., Mahmoud, A. A., & Jararweh, Y. (2017). Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features. Information Processing & Management, 53(3), 640-652. https://doi.org/10.1016/j.ipm.2017.01.002
  36. Montoya, R. M., Horton, R. S., Vevea, J. L., Citkowicz, M., & Lauber, E. A. (2017). A re-examination of the mere exposure effect: The influence of repeated exposure on recognition, familiarity, and liking. Psychological Bulletin, 143(5), 459-498. https://doi.org/10.1037/bul0000085
  37. Mudambi, S. M., & Schuff, D. (2010). What makes a helpful online review? A study of customer reviews on Amazon.Com. MIS Quarterly, 34(1), 185-200. https://doi.org/10.2307/20721420
  38. Nisbett, R. E., & Ross, L. (1980). Human inference: Strategies and shortcomings of social judgment. New Jersey: Prentice-Hall.
  39. Pan, Y., & Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated product reviews. Journal of Retailing, 87(4), 598-612. https://doi.org/10.1016/j.jretai.2011.05.002
  40. Park, D. H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7(4), 386-398. https://doi.org/10.1016/j.elerap.2007.11.004
  41. Park, D. H., Lee, J., & Han, I. (2014). The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International Journal of Electronic Commerce, 11(4), 125-148. https://doi.org/10.2753/JEC1086-4415110405
  42. Petty, R. E., Brinol, P., & Priester, J. R. (2009). Mass media attitude change. Implications for the elaboration likelihood model of persuasion. In J. Brynat & D. Zillmann (Eds.), Media effects: Advances in theory and research (3rd ed., pp. 125-164). New York: Psychology Press.
  43. Ren, G., & Hong, T. (2019). Examining the relationship between specific negative emotions and the perceived helpfulness of online reviews. Information Processing & Management, 56(4), 1425-1438. https://doi.org/10.1016/j.ipm.2018.04.003
  44. Sabate, F., Berbegal-Mirabent, J., CaCabate, A., & Lebherz, P. R. (2014). Factors influencing popularity of branded content in Facebook fan pages. European Management Journal, 32(6), 1001-1011. https://doi.org/10.1016/j.emj.2014.05.001
  45. Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. https://doi.org/10.1016/j.dss.2015.10.006
  46. Schuckert, M., Liu, X., & Law, R. (2015). Hospitality and tourism online reviews: Recent trends and future directions. Journal of Travel & Tourism Marketing, 32(5), 608-621. https://doi.org/10.1080/10548408.2014.933154
  47. Susan, M. M., & David, S. (2010). What makes a helpful online review? A study of customer reviews on Amazon. com. MIS Quarterly, 34(1), 185-200. https://doi.org/10.2307/20721420
  48. Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76(3), 282-299. https://doi.org/10.1037/h0027242
  49. Wan, Y. (2015). The Matthew effect in social commerce. Electronic Markets, 25(4), 313-324. https://doi.org/10.1007/s12525-015-0186-x
  50. Wang, Y., Wang, J., & Yao, T. (2019). What makes a helpful online review? A meta-analysis of review characteristics. Electronic Commerce Research, 19(2), 257-284. https://doi.org/10.1007/s10660-018-9310-2
  51. Xu, D., Ye, Q., Hong, H., & Sun, F. (2022). Emotions for attention in online consumer reviews: The moderated mediating role of review helpfulness. Industrial Management & Data Systems, 122(3), 729-751. https://doi.org/10.1108/IMDS-07-2021-0473
  52. Yahav, I., Shehory, O., & Schwartz, D. (2018). Comments mining with TF-IDF: The inherent bias and its removal. IEEE Transactions on Knowledge and Data Engineering, 31(3), 437-450. https://doi.org/10.1109/tkde.2018.2840127
  53. Yang, S., Yao, J., & Qazi, A. (2020). Does the review deserve more helpfulness when its title resembles the content? Locating helpful reviews by text mining. Information Processing & Management, 57(2), 102179. https://doi.org/10.1016/j.ipm.2019.102179
  54. Yang, S., Zhou, C., & Chen, Y. (2021). Do topic consistency and linguistic style similarity affect online review helpfulness? An elaboration likelihood model perspective. Information Processing & Management, 58(3), 102521. https://doi.org/10.1016/j.ipm.2021.102521
  55. Yang, S., Zhou, Y., Yao, J., Chen, Y., & Wei, J. (2019). Understanding online review helpfulness in omnichannel retailing. Industrial Management & Data Systems, 119(8), 1565-1580. https://doi.org/10.1108/IMDS-10-2018-0450
  56. Yao, Z. Y., Park, Y. K., & Hong, T. H. (2020). A study on the effect of reviewer's attributes on the usefulness of online review. The Journal of Information Systems, 29(2), 173-195. https://doi.org/10.5859/KAIS.2020.29.2.173
  57. Zhou, S., & Guo, B. (2017). The order effect on online review helpfulness: A social influence perspective. Decision Support Systems, 93, 77-87. https://doi.org/10.1016/j.dss.2016.09.016
  58. Zhou, Y., & Yang, S. (2019). Roles of review numerical and textual characteristics on review helpfulness across three different types of reviews. IEEE Access, 7, 27769-27780. https://doi.org/10.1109/access.2019.2901472
  59. Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133-148. https://doi.org/10.1509/jm.74.2.133