DOI QR코드

DOI QR Code

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila

  • Ryu, Tae Hoon (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Subramanian, Manivannan (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yeom, Eunbyul (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yu, Kweon (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2022.01.10
  • 심사 : 2022.05.02
  • 발행 : 2022.09.30

초록

CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.

키워드

과제정보

Drosophila stocks were obtained from Bloomington Stock Center (Bloomington, IN, USA) and Vienna Drosophila RNAi Center (VDRC, Vienna, Austria). This work was supported by grants from KRIBB Research Initiative Program and National Research Foundation of Korea (2015R1A5A1009024, 2019R1A2C2004149).

참고문헌

  1. Alekseyenko, O.V., Lee, C., and Kravitz, E.A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 5, e10806.
  2. Berry, J.A., Cervantes-Sandoval, I., Nicholas, E.P., and Davis, R.L. (2012). Dopamine is required for learning and forgetting in Drosophila. Neuron 74, 530-542. https://doi.org/10.1016/j.neuron.2012.04.007
  3. Bou Dib, P., Gnagi, B., Daly, F., Sabado, V., Tas, D., Glauser, D.A., Meister, P., and Nagoshi, E. (2014). A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet. 10, e1004718.
  4. Corbeil, D., Roper, K., Hannah, M.J., Hellwig, A., and Huttner, W.B. (1999). Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells - a combination of apical sorting and retention in plasma membrane protrusions. J. Cell Sci. 112, 1023-1033. https://doi.org/10.1242/jcs.112.7.1023
  5. Creamer, M.S., Mano, O., and Clark, D.A. (2018). Visual control of walking speed in Drosophila. Neuron 100, 1460-1473.e6. https://doi.org/10.1016/j.neuron.2018.10.028
  6. Dauer, W. and Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  7. Ding, Q., Miyazaki, Y., Tsukasa, K., Matsubara, S., Yoshimitsu, M., and Takao, S. (2014). CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol. Cancer 13, 15.
  8. Fuenzalida-Uribe, N. and Campusano, J.M. (2018). Unveiling the dual role of the dopaminergic system on locomotion and the innate value for an aversive olfactory stimulus in Drosophila. Neuroscience 371, 433-444. https://doi.org/10.1016/j.neuroscience.2017.12.032
  9. Gowda, S.B.M., Salim, S., and Mohammad, F. (2021). Anatomy and neural pathways modulating distinct locomotor behaviors in Drosophila larva. Biology (Basel) 10, 90.
  10. Huang, R., Song, T., Su, H., Lai, Z., Qin, W., Tian, Y., Dong, X., and Wang, L. (2020). High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila. Elife 9, e53103.
  11. Jordan, K.W., Carbone, M.A., Yamamoto, A., Morgan, T.J., and Mackay, T.F. (2007). Quantitative genomics of locomotor behavior in Drosophila melanogaster. Genome Biol. 8, R172.
  12. Karim, B.O., Rhee, K.J., Liu, G., Yun, K., and Brant, S.R. (2014). Prom1 function in development, intestinal inflammation, and intestinal tumorigenesis. Front. Oncol. 4, 323.
  13. Keysar, S.B. and Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9, 2450-2457. https://doi.org/10.1158/1535-7163.MCT-10-0530
  14. Kim, J., Jang, S., Choe, H.K., Chung, S., Son, G.H., and Kim, K. (2017). Implications of circadian rhythm in dopamine and mood regulation. Mol. Cells 40, 450-456.
  15. Lan, X., Wu, Y.Z., Wang, Y., Wu, F.R., Zang, C.B., Tang, C., Cao, S., and Li, S.L. (2013). CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Int. J. Mol. Med. 31, 315-324. https://doi.org/10.3892/ijmm.2012.1208
  16. Landayan, D., Feldman, D.S., and Wolf, F.W. (2018). Satiation state-dependent dopaminergic control of foraging in Drosophila. Sci. Rep. 8, 5777.
  17. Lee, S.H., Cho, E., Yoon, S.E., Kim, Y., and Kim, E.Y. (2021). Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila. Commun. Biol. 4, 693.
  18. Liu, Q., Liu, S., Kodama, L., Driscoll, M.R., and Wu, M.N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114-2123. https://doi.org/10.1016/j.cub.2012.09.008
  19. Mao, Z. and Davis, R. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5.
  20. Miraglia, S., Godfrey, W., Yin, A.H., Atkins, K., Warnke, R., Holden, J.T., Bray, R.A., Waller, E.K., and Buck, D.W. (1997). A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013-5021. https://doi.org/10.1182/blood.V90.12.5013
  21. Nie, J., Mahato, S., Mustill, W., Tipping, C., Bhattacharya, S.S., and Zelhof, A.C. (2012). Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev. Biol. 371, 312-320. https://doi.org/10.1016/j.ydbio.2012.08.024
  22. Pandey, U.B. and Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411-436. https://doi.org/10.1124/pr.110.003293
  23. Perry, C.J. and Barron, A.B. (2013). Neural mechanisms of reward in insects. Annu. Rev. Entomol. 58, 543-562. https://doi.org/10.1146/annurev-ento-120811-153631
  24. Poewe, W., Antonini, A., Zijlmans, J.C., Burkhard, P.R., and Vingerhoets, F. (2010). Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clin. Interv. Aging 5, 229-238.
  25. Riemensperger, T., Isabel, G., Coulom, H., Neuser, K., Seugnet, L., Kume, K., Iche-Torres, M., Cassar, M., Strauss, R., Preat, T., et al. (2011). Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl. Acad. Sci. U. S. A. 108, 834-839. https://doi.org/10.1073/pnas.1010930108
  26. Riemensperger, T., Issa, A.R., Pech, U., Coulom, H., Nguyen, M.V., Cassar, M., Jacquet, M., Fiala, A., and Birman, S. (2013). A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease. Cell Rep. 5, 952-960. https://doi.org/10.1016/j.celrep.2013.10.032
  27. Roper, K., Corbeil, D., and Huttner, W.B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2, 582-592. https://doi.org/10.1038/35023524
  28. Ryu, T.H., Yeom, E., Subramanian, M., Lee, K.S., and Yu, K. (2019). Prominin-like regulates longevity and glucose metabolism via insulin signaling in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1557-1563. https://doi.org/10.1093/gerona/gly291
  29. Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.Y., Hayworth, K.J., Huang, G.B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., et al. (2020). A connectome and analysis of the adult Drosophila central brain. Elife 9, e57443.
  30. Sekine, Y., Takagahara, S., Hatanaka, R., Watanabe, T., Oguchi, H., Noguchi, T., Naguro, I., Kobayashi, K., Tsunoda, M., Funatsu, T., et al. (2011). p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors. J. Cell Sci.124, 3006-3016. https://doi.org/10.1242/jcs.085902
  31. Shulman, J.M., Jager, P.L.D., and Feany, M.B. (2011). Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193-222. https://doi.org/10.1146/annurev-pathol-011110-130242
  32. Soto-Padilla, A., Ruijsink, R., Sibon, O.C.M., van Rijn, H., and Billeter, J.C. (2018). Thermosensory perception regulates speed of movement in response to temperature changes in Drosophila melanogaster. J. Exp. Biol.221, jeb174151.
  33. Sun, J., Xu, A.Q., Giraud, J., Poppinga, H., Riemensperger, T., Fiala, A., and Birman, S. (2018). Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila. Front. Syst. Neurosci. 12, 6.
  34. Tao, L., Ozarkar, S., and Bhandawat, V. (2020). Mechanisms underlying attraction to odors in walking Drosophila. PLoS Comput. Biol. 16, e1007718.
  35. Timmons, S., Coakley, M.F., Moloney, A.M., and O' Neill, C. (2009). Akt signal transduction dysfunction in Parkinson's disease. Neurosci. Lett. 467, 30-35. https://doi.org/10.1016/j.neulet.2009.09.055
  36. Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S., and Kume, K. (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat. Neurosci. 15, 1516-1523. https://doi.org/10.1038/nn.3238
  37. Villanueva, J.E., Livelo, C., Trujillo, A.S., Chandran, S., Woodworth, B., Andrade, L., Le, H.D., Manor, U., Panda, S., and Melkani, G.C. (2019). Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat. Commun. 10, 2700.
  38. Wang, X., Zheng, H., Jia, Z., Lei, Z., Li, M., Zhuang, Q., Zhou, H., Qiu, Y., Fu, Y., Yang, X., et al. (2019). Drosophila Prominin-like, a homolog of CD133, interacts with ND20 to maintain mitochondrial function. Cell Biosci. 9, 101.
  39. Wei, Y., Jiang, Y., Zou, F., Liu, Y., Wang, S., Xu, N., Xu, W., Cui, C., Xing, Y., Liu, Y., et al. (2013). Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 6829-6834. https://doi.org/10.1073/pnas.1217002110
  40. Weigmann, A., Corbeil, D., Hellwig, A., and Huttner, W.B. (1997). Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 94, 12425-12430. https://doi.org/10.1073/pnas.94.23.12425
  41. Wittkopp, P.J., True, J.R., and Carroll, S.B. (2002). Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849-1858. https://doi.org/10.1242/dev.129.8.1849
  42. Won, S.Y., You, S.T., Choi, S.W., McLean, C., Shin, E.Y., and Kim, E.G. (2021). cAMP response element binding-protein- and phosphorylation-dependent regulation of tyrosine hydroxylase by PAK4: implications for dopamine replacement therapy. Mol. Cells 44, 493-499. https://doi.org/10.14348/molcells.2021.2250
  43. Xie, J., Wang, D., Ling, S., Yang, G., Yang, Y., and Chen, W. (2019). High-salt diet causes sleep fragmentation in young Drosophila through circadian rhythm and dopaminergic systems. Front. Neurosci. 13, 1271.
  44. Yamamoto, S. and Seto, E.S. (2014). Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Exp. Anim. 63, 107-119. https://doi.org/10.1538/expanim.63.107
  45. Zacchigna, S., Oh, H., Wilsch-Brauninger, M., Missol-Kolka, E., Jaszai, J., Jansen, S., Tanimoto, N., Tonagel, F., Seeliger, M., Huttner, W.B., et al. (2009). Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J. Neurosci. 29, 2297-2308. https://doi.org/10.1523/JNEUROSCI.2034-08.2009
  46. Zhang, Q., Zulfiqar, F., Xiao, X., Riazuddin, S.A., Ahmad, Z., Caruso, R., MacDonald, I., Sieving, P., Riazuddin, S., and Hejtmancik, J.F. (2007). Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum. Genet. 122, 293-299. https://doi.org/10.1007/s00439-007-0395-2
  47. Zheng, H., Zhang, Y., Chen, Y., Guo, P., Wang, X., Yuan, X., Ge, W., Yang, R., Yan, Q., Yang, X., et al. (2019). Prominin-like, a homolog of mammalian CD133, suppresses di lp6 and TOR signaling to maintain body size and weight in Drosophila. FASEB J. 33, 2646-2658. https://doi.org/10.1096/fj.201800123R
  48. Zhou, Q.Y. and Palmiter, R.D. (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197-1209. https://doi.org/10.1016/0092-8674(95)90145-0