Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) [No. 2021R1F1A1047343].
References
- R. Kress, Numerical Analysis, Graduate Texts in Mathematics 181, Springer Verlag, New York, 1998.
- K.A. Atkinson, An Introduction to Numerical Analysis, 2nd edition, John Wiley & Sons, New York, 1989.
- R.L. Burden and J.D. Faires, Numerical Analysis, 6th Edition, Springer, New York, 1997.
- J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, New York, 2003.
- A.M. Wazwaz, A new method for solving singular initial value problems in the second- order ordinary differ- ential equations, Applied Mathematics and Computations, 28 (2002), 45-57. https://doi.org/10.1016/S0096-3003(01)00021-2
- K.H. Mohammad, S.A. Mohammad, A.H. Mohammad, A.S. Mohamma, and B.H. Mohammad, An Implicit Method for Numerical Solution of Second Order Singular Initial Value Problems, The Open Mathematics Journal, 7 (2014), 1-5. https://doi.org/10.2174/1874117701407010001
- O. Koch, P. Kofler, and E.B. Weinmuller, The implicit Euler method for the numerical solution of singular initial value problems, Applied Numerical Mathematics, 34 (2000), 231-252. https://doi.org/10.1016/S0168-9274(99)00130-0
- D.F. Griffiths and D.J. Higham, Numerical methods for ordinary differential equations, Springer, New York, 2010.
- A. Guzel and W. Layton, Time filters increase accuracy of the fully implicit method, BIT Numerical Mathe- matics, 58 (2018), 301-315. https://doi.org/10.1007/s10543-018-0695-z
- G.G. Dahlquist, A special stability problem for linear multistep methods, BIT Numerical Mathematics, 3 (1963), 27-43. https://doi.org/10.1007/BF01963532
- G.G. Dahlquist, W. Liniger, and O. Nevanlinna, Stability of two-step methods for variable integration steps, SIAM Journal on Numerical Analysis, 20 (1983), 1071-1085. https://doi.org/10.1137/0720076
- Wikipedia, Stiff equation, http://en.wikipedia.org/wiki/Stiff_equation#A-stability.