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ABSTRACT. To solve the initial value problem we present a new single-step implicit method
based on the Euler method. We prove that the proposed method has convergence order 2. In
practice, numerical results of the proposed method for some selected examples show an error
tendency similar to the second-order Taylor method. It can also be found that this method is
useful for stiff initial value problems, even when a small number of nodes are used. In addition,
we extend the proposed method by using weighted averages with a parameter and show that
its convergence order becomes 2 for the parameter near 1

2
. Moreover, it can be seen that the

extended method with properly selected values of the parameter improves the approximation
error more significantly.

1. INTRODUCTION

In this work we consider an initial value problem as follows{
y′(t) = f(t, y), a ≤ t ≤ b

y(a) = α
(1.1)

where f is a real valued function with which this initial value problem has a unique solution
y = y(t), a ≤ t ≤ b.

Classical methods for numerical solutions for the initial value problem can be found in many
literatures (see for example [1, 2, 3, 4]). Among them, the well-known Taylor method of order n
is a typical single-step numerical method which has convergence order n for a step size h > 0.
We are interested in the Euler method(or first-order Taylor method), which is the simplest and
standard single-step numerical method. The Euler method is, however, less accurate than other
higher order methods such as the Runge-Kutta method and the linear multistep method. On the
other hand, the implicit Euler method(or backward Euler method) is also one of the most basic
numerical methods for solving ordinary differential equations. In general, the implicit method
is known to be effective for stiff initial value problems even when the step size is not very small
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[5, 6, 7, 8]. Recently, a linear multistep method using the standard implicit Euler method and a
time filter is introduced in [9].

In this work, we aim to propose a new single-step implicit method based on the Euler method
which can improve convergence order of the original one. In the following section we develop
an implicit Euler method including the mean of the approximate solutions yi and yi+1 at the
adjacent points ti and ti+1, respectively. It is proved that the proposed method enhances con-
vergence order of the standard implicit Euler method from one to two. Solving the nonlinear
implicit equation for the next approximation yi+1 with the Newton method yields an appropri-
ate iterative formula.

Numerical results for some selected examples show that the proposed method causes approx-
imation errors similar to the second-order Taylor method, as expected from the error analysis.
It is also seen that the method is particularly effective for the stiff initial value problem.

In section 3 we propose a modified method using parameterized weighed averages, which
is an extended version of the method provided in the previous section. Analysis of the error
bound and the stability of the method, associated with a parameter 0 < δ ≤ 1, is performed. It
is demonstrated that the proposed method has convergence order of two for δ close enough to 1

2

and is A-stable [10, 11, 12] for every 0 < δ ≤ 1
2 . Numerical results of the proposed method for

some examples show that the approximation error can be significantly improved by choosing
appropriate values for the parameter.

2. AN IMPLICIT EULER METHOD ASSOCIATED WITH THE NEWTON METHOD

For the equidistant grid points

tj = a+ jh , j = 0, 1, 2, . . . , N,

with step size h = (b − a)/N , we recall the following generalized Euler method[1] by which
one can obtain approximations {yj}Nj=1 to the solutions {y(tj)}Nj=1 of the initial problem (1.1).

yi+1 = yi + hϕ(ti, yi;h) , i = 0, 1, 2, . . . , N − 1, (2.1)

where the function ϕ is given in terms of f , in the initial problem (1.1), and the step size h.
The above explicit method is the prototype of the implicit method developed in this work, and
its numerical results will be compared with the method (2.1) of some typical cases of ϕ. For
example, the standard Euler method(or first-order Taylor method) has

ϕ(t, y;h) = f(t, y)

and the modified Euler method(or second-order Runge-Kutta method) has

ϕ(t, y;h) =
1

2
[f(t, y) + f(t+ h, y + hf(t, y))] .

In addition, the second-order Taylor method has

ϕ(t, y;h) = f(t, y) +
h

2
f ′(t, y) ,
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where f ′ is a derivative of f(t, y(t)) with respect to the variable t, that is,

f ′(t, y) =
d

dt
f(t, y(t)) = ft(t, y(t)) + fy(t, y(t))f(t, y(t)) .

In the following subsection we develop a new single-step method, based on an implicit
version of the standard Euler method, whose error tendency turns to be the same as that of the
typical second-order methods aforementioned.

2.1. A second order implicit method. We focus on the Euler method, the basic single-step
method, such as

x = w + hf(ti, w), i = 0, 1, 2, . . . , N − 1, (2.2)

where w := yi and x := yi+1 are the approximations to the solutions y(ti) and y(ti+1),
respectively.

For each i fixed, setting

ti =
ti + ti+1

2
, w =

w + x

2
(2.3)

and referring to the standard Euler method (2.2), we suggest an implicit equation to determine
x as follows.

x = w +
h

2
f(ti, w).

From (2.3) this equation simply becomes

x = w + hf(ti, w). (2.4)

It can be seen that the method (2.4) coincides with the well known implicit midpoint method
as a result. However, as can be seen from the preceding formula, the derivation of (2.4) is
based on pivoting the mean ω̄ = (x+ w)/2 when applying the standard Euler method. This is
the motivation behind the extended implicit method developed in Section 3 using a weighted
average between w and x.

From the following theorem we can see that convergence order of the method proposed
above is 2. The theorem is a special case of δ = 1

2 in Theorem 3.1 given in the next section, so
the proof is omitted.

Theorem 2.1. Suppose f(t, y), in the initial value problem (1.1), satisfies a Lipschitz condition
in the variable y with a Lipschitz constant L on a set D = {(t, y) | a ≤ t ≤ b, −∞ <
y < ∞}. Furthermore, let f be twice continuously differentiable in D. Then, for each i =
0, 1, 2, . . . , N − 1 the approximate solution yi+1 (= x) to the exact solution y(ti+1) obtained
by the formula (2.4) satisfies

|y (ti+1)− yi+1| ≤
C

L
h2

{
e(i+1)hL − 1

}
,

where C is a positive constant and the step size h is assumed to be small enough.
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Since the implicit Eq.(2.4) cannot be solved algebraically for x (= yi+1) in general, a nu-
merical method to approximate x is required. In practice, if we define a function F by

F (x) = x− w − hf(ti, w),

then the problem of finding x in the Eq.(2.4) becomes the root-finding for the equation F (x) =
0. Using the Newton method with an initial guess x(0) = w (= yi), we consider the following
iterative method.

x(k) = x(k−1) − F (x(k−1))

F ′(x(k−1))

= x(k−1) −
x(k−1) − w − hf

(
ti,

w+x(k−1)

2

)
1− hfx

(
ti,

w+x(k−1)

2

) , k = 1, 2, . . . , kmax,

(2.5)

where fx is a partial derivative defined, for η = w, by

fx(ti, η) :=
∂

∂x
f
(
ti, w

)
=

∂

∂x
f

(
ti,
w + x

2

)
=

1

2

[
∂

∂η
f
(
ti, η

)]
.

(2.6)

When, for some k, the iterate x(k) obtained by the formula (2.5) satisfies a proper tolerance
error, then we set x = yi+1 = x(k).

If the step size h is small enough then the number of iterations kmax does not need to be
large. As a special case of a single-iteration, that is, kmax = 1 in (2.5) with x(0) = w, we have
the following simple formula.

x = x(1) = w +
hf(ti, w)

1− hfx(ti, w)
. (2.7)

On the other hand, if f(t, y) is a linear map with respect to y in particular then it follows that
F (x(1)) = 0 and x(2) = x(1). Therefore, we have F

(
x(k)

)
= 0 for every k ≥ 1. That is, the

iteration (2.5) is independent of k. Thus, in this case the proposed method (2.5) is reduced to
the single-iteration formula (2.7).

2.2. Numerical examples. To explore the availability of the proposed method, we select some
typical examples.

Example 1. {
y′(t) = (1− t)y2, −2 ≤ t ≤ 2

y(−2) = 0.2

whose exact solution is y = 2
2−2t+t2

.
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Table 1 includes numerical errors, ei+1 := |yi+1 − y(ti+1)| of the approximates yi+1 ob-
tained by the proposed method (2.5) with N = 20. Numerical errors of the standard Euler
method and the second-order Taylor method are also included for comparison. From the table
one can see that the proposed method (2.5) is competitive to the second-order Taylor method.

In addition, we denote by E2,N the l2–norm error of the approximates {yi+1}N−1
i=0 defined

as

E2,N =

[
N−1∑
i=0

e2i+1

]1/2

and denote by E∞,N the l∞–norm error defined as

E∞,N = max
0≤i≤N−1

ei+1.

TABLE 1. Differences between the approximate solutions {yj}Nj=0 and the
exact solutions {y(tj)}Nj=0 for Example 1 (N = 20).

Existing methods Presented method
tj Euler method Taylor method of

order 2
eqn. (2.5) eqn. (3.3)

(with δ = δ∗)
−2.0 0 0 0 0

−1.8 2.2× 10−3 1.6× 10−4 1.1× 10−4 6.2× 10−5

−1.6 5.6× 10−3 4.3× 10−4 3.0× 10−4 1.5× 10−4

−1.4 1.1× 10−2 8.5× 10−4 6.1× 10−4 2.8× 10−4

−1.2 1.8× 10−2 1.5× 10−3 1.1× 10−3 4.6× 10−4

−1.0 3.0× 10−2 2.5× 10−3 1.9× 10−3 7.0× 10−4

−0.8 4.6× 10−2 4.2× 10−3 3.3× 10−3 1.0× 10−3

−0.6 7.1× 10−2 6.7× 10−3 5.6× 10−3 1.5× 10−3

−0.4 1.1× 10−1 1.1× 10−2 9.3× 10−3 2.1× 10−3

−0.2 1.6× 10−1 1.7× 10−2 1.6× 10−2 2.8× 10−3

0.0 2.4× 10−1 2.5× 10−2 2.6× 10−2 3.5× 10−3

0.2 3.4× 10−1 3.7× 10−2 4.1× 10−2 4.2× 10−3

0.4 4.7× 10−1 4.9× 10−2 6.4× 10−2 4.3× 10−3

0.6 6.0× 10−1 5.9× 10−2 9.1× 10−2 3.3× 10−3

0.8 7.0× 10−1 6.3× 10−2 1.1× 10−1 1.3× 10−3

1.0 7.2× 10−1 6.0× 10−2 1.2× 10−1 5.0× 10−3

1.2 6.4× 10−1 5.8× 10−2 1.1× 10−1 9.4× 10−3

1.4 5.1× 10−1 5.8× 10−2 9.1× 10−2 9.8× 10−3

1.6 3.7× 10−1 5.2× 10−2 6.4× 10−2 6.3× 10−3

1.8 2.7× 10−1 4.2× 10−2 4.1× 10−2 1.8× 10−3

2.0 1.9× 10−1 3.0× 10−2 2.6× 10−2 1.7× 10−3

l2-error(E2,N ) 1.70 0.17 0.27 0.018
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FIGURE 1. Graphs of the l2-norm errors, E2,N in (a) and the l∞-norm errors,
E∞,N in (b), 10 ≤ N ≤ 100, for Example 1.

Figure 1 shows the distribution of the errorsE2,N andE∞,N for the approximates {yi+1}N−1
i=0

obtained by the proposed methods (2.5), compared with those of the original Euler method and
the second-order Taylor method(indicated by T1 and T2, respectively), with respect to the
number of nodes 10 ≤ N ≤ 100.

Example 2. (Burden and Paires[3])
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FIGURE 2. Graphs of the l2-norm errors, E2,N in (a) and the l∞-norm errors,
E∞,N in (b), 10 ≤ N ≤ 100, for Example 2.
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{
y′(t) = y − t2 + 1, 0 ≤ t ≤ 2

y(0) = 0.5

whose exact solution is y = (t+ 1)2 − 1
2e

t.
Since f(t, y) = y − t2 + 1 is a linear map of y, the iteration (2.5) is reduced to the single-

iteration formula (2.7). Table 2 includes numerical errors, |yi+1 − y(ti+1)| of the approximates
yi+1 obtained by the proposed method (2.7) with N = 20. As in the case of Example 1, the
proposed method (2.7) shows similar error tendency to the Taylor method of order 2.

Figure 2 shows the distribution of the l2-norm error E2,N and the l∞-norm error E∞,N

for the approximates {yi+1}N−1
i=0 obtained by the proposed methods (2.7), the original Euler

method and the second-order Taylor method, with respect to the number of nodes 10 ≤ N ≤
100.

TABLE 2. Differences between the approximate solutions {yj}Nj=0 and the
exact solutions {y(tj)}Nj=0 for Example 2 (N = 20).

Existing methods Presented method
tj Euler method Taylor method of

order 2
eqn. (2.7) eqn. (3.4)

(with δ = δ∗)
0.0 0 0 0 0

0.1 7.4× 10−3 8.6× 10−5 1.2× 10−4 4.2× 10−5

0.2 1.5× 10−2 1.9× 10−4 4.5× 10−4 8.3× 10−5

0.3 2.4× 10−2 3.1× 10−4 7.1× 10−4 1.2× 10−4

0.4 3.3× 10−2 4.6× 10−4 9.8× 10−4 1.6× 10−4

0.5 4.2× 10−2 6.4× 10−4 1.3× 10−3 2.0× 10−4

0.6 5.2× 10−2 8.5× 10−4 1.6× 10−3 2.3× 10−4

0.7 6.2× 10−2 1.1× 10−3 2.0× 10−3 2.6× 10−4

0.8 7.3× 10−2 1.4× 10−3 2.3× 10−3 2.8× 10−4

0.9 8.5× 10−2 1.7× 10−3 2.7× 10−3 3.0× 10−4

1.0 9.7× 10−2 2.1× 10−3 3.2× 10−3 3.0× 10−4

1.1 1.1× 10−1 2.6× 10−3 3.6× 10−3 3.0× 10−4

1.2 1.2× 10−1 3.1× 10−3 4.2× 10−3 2.8× 10−4

1.3 1.4× 10−1 3.7× 10−3 4.7× 10−3 2.4× 10−4

1.4 1.5× 10−1 4.4× 10−3 5.3× 10−3 1.9× 10−4

1.5 1.7× 10−1 5.2× 10−3 5.9× 10−3 1.1× 10−4

1.6 1.8× 10−1 6.1× 10−3 6.6× 10−3 7.1× 10−7

1.7 2.0× 10−1 7.2× 10−3 7.3× 10−3 1.4× 10−4

1.8 2.1× 10−1 8.4× 10−3 8.1× 10−3 3.2× 10−4

1.9 2.3× 10−1 9.8× 10−3 8.9× 10−3 5.4× 10−4

2.0 2.4× 10−1 1.2× 10−2 9.8× 10−3 8.2× 10−4

l2-error(E2,N ) 0.60 0.022 0.022 0.0014
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Example 3.(Burden and Paires[3]){
y′(t) = 5e5t(t− y)2 + 1, 0 ≤ t ≤ 2

y(0) = −1

whose exact solution is y = t− e−5t.
This example includes the so-called stiff differential equation as the exact solution involves

fast decaying transient term. It is well-known that most numerical methods with not very small
step-sizes are unstable when they are directly applied to the stiff differential equation [3, 12].

Numerical errors, |yi+1 − y(ti+1)| of the approximates yi+1 obtained by the proposed method
(2.5), the standard Euler method and the Taylor method of order 2, for small number of nodes
N = 5, 10, are given in Table 3. Contrary to the proposed method (2.5), the errors of the
existing methods blow up for N = 5 and/or N = 10. This implies that the proposed method
is useful even with a large step-size for the stiff equation. Numerical errors with N = 20 are
given in Table 4, and it can be seen that the proposed method results in slightly better errors
than the second-order Taylor method.

TABLE 3. Differences between the approximate solutions {yj}Nj=0 and the
exact solutions {y(tj)}Nj=0 for Example 3 (N = 5, 10).

Existing methods Presented method
N tj Euler method Taylor method of

order 2
eqn. (2.5) eqn. (3.3)

(with δ = δ∗)
0.0 0 0 0 0

0.4 1.1× 100 8.7× 10−1 2.4× 10−1 4.3× 10−2

5 0.8 1.6× 101 1.9× 102 7.1× 10−2 7.7× 10−3

1.2 2.7× 104 8.2× 1010 4.9× 10−2 1.1× 10−3

1.6 6.0× 1011 3.5× 1038 4.6× 10−2 1.5× 10−4

2.0 2.1× 1027 1.0× 10123 4.2× 10−2 2.1× 10−5

0.0 0 0 0 0

0.2 3.7× 10−1 1.3× 10−1 6.6× 10−2 2.4× 10−3

0.4 1.4× 10−1 2.7× 10−2 2.4× 10−2 1.2× 10−3

0.6 5.0× 10−2 2.2× 100 9.0× 10−3 4.7× 10−4

0.8 1.8× 10−2 4.2× 103 3.3× 10−3 1.8× 10−4

10 1.0 6.7× 10−3 2.1× 1014 1.2× 10−3 6.6× 10−5

1.2 2.5× 10−3 2.2× 1047 4.5× 10−4 2.5× 10−5

1.4 9.1× 10−4 1.6× 10147 1.6× 10−4 9.0× 10−6

1.6 3.4× 10−4 1.0× 10123 6.1× 10−5 3.3× 10−6

1.8 1.2× 10−4 ∞ 2.2× 10−5 1.2× 10−6

2.0 4.5× 10−5 ∞ 8.2× 10−6 4.5× 10−7

l2-error(E2,N ) 0.40 − 0.071 0.0027
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TABLE 4. Differences between the approximate solutions {yj}Nj=0 and the
exact solutions {y(tj)}Nj=0 for Example 3 (N = 20).

Existing methods Presented method
tj Euler method Taylor method of

order 2
eqn. (2.5) eqn. (3.3)

(with δ = δ∗)
0.0 0 0 0 0

0.1 1.1× 10−1 1.9× 10−2 1.4× 10−2 2.5× 10−4

0.2 7.4× 10−2 2.1× 10−2 1.3× 10−2 2.4× 10−4

0.3 4.7× 10−2 1.7× 10−2 9.3× 10−3 1.8× 10−4

0.4 2.9× 10−2 1.3× 10−2 6.1× 10−3 1.2× 10−4

0.5 1.7× 10−2 9.1× 10−3 3.9× 10−3 7.7× 10−5

0.6 1.1× 10−2 6.2× 10−3 2.4× 10−3 4.8× 10−5

0.7 6.4× 10−3 4.2× 10−3 1.5× 10−3 3.0× 10−5

0.8 3.9× 10−3 2.7× 10−3 9.1× 10−4 1.8× 10−5

0.9 2.4× 10−3 1.8× 10−3 5.5× 10−4 1.1× 10−5

1.0 1.4× 10−3 1.1× 10−3 3.4× 10−4 6.8× 10−6

1.1 8.7× 10−4 7.3× 10−4 2.1× 10−4 4.1× 10−6

1.2 5.3× 10−4 4.6× 10−4 1.2× 10−4 2.5× 10−6

1.3 3.2× 10−4 2.9× 10−4 7.5× 10−5 1.5× 10−6

1.4 1.9× 10−4 1.8× 10−4 4.6× 10−5 9.3× 10−7

1.5 1.2× 10−4 1.2× 10−4 2.8× 10−5 5.6× 10−7

1.6 7.2× 10−5 7.2× 10−5 1.7× 10−5 3.4× 10−7

1.7 4.3× 10−5 4.5× 10−5 1.0× 10−5 2.1× 10−7

1.8 2.6× 10−5 2.8× 10−5 6.2× 10−6 1.3× 10−7

1.9 1.6× 10−5 1.7× 10−5 3.8× 10−6 7.6× 10−8

2.0 9.7× 10−6 1.1× 10−5 2.3× 10−6 4.6× 10−8

l2-error(E2,N ) 0.14 0.037 0.022 0.00042

In addition, Figure 3 compares the l2-norm error E2,N and the l∞-norm error E∞,N for the
approximates {yi+1}N−1

i=0 obtained by the proposed methods (2.5), the original Euler method
and the second-order Taylor method, with respect to the number of nodes 10 ≤ N ≤ 100.

3. AN EXTENDED METHOD WITH WEIGHTED AVERAGES

To extend the proposed method associated with the mean values ti = (ti + ti+1)/2 and
w = (w + x)/2 in (2.3), for the approximations w = yi at ti and x = yi+1 at ti+1, we set
weighted averages as

t
[δ]
i = δti + (1− δ)ti+1 , w[δ] = δw + (1− δ)x , (3.1)

where 0 < δ ≤ 1.
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FIGURE 3. Graphs of the l2-norm errors, E2,N in (a) and the l∞-norm errors,
E∞,N in (b), 10 ≤ N ≤ 100, for Example 3.

Employing the Euler method and the weighted averages t[δ]i and w[δ], with ti+1 − t
[δ]
i = δh,

we extend the implicit Eq.(2.4) to determine x as follows.

x = w[δ] + δhf(t
[δ]
i , w

[δ]).

That is, from the second equation in (3.1),

x = w + hf(t
[δ]
i , w

[δ]). (3.2)

It is noted that the standard implicit Euler method (or backward Euler method),

x = w + hf(ti+1, x)

is equivalent to (3.2) with δ = 0, an exceptional case.
For solving the nonlinear equation numerically, if we define a function F [δ] as

F [δ](x) = x− w − hf(t
[δ]
i , w

[δ])

then the problem of finding x in the Eq.(3.2), based on the Newton method with an initial guess
x(0) = w, provides the following iterative method.

x(k) = x(k−1) − F [δ](x(k−1))

F [δ]′(x(k−1))

= x(k−1) −
x(k−1) − w − hf

(
t
[δ]
i , δw + (1− δ)x(k−1)

)
1− hfx

(
t
[δ]
i , δw + (1− δ)x(k−1)

) , k = 1, 2, . . . kmax,

(3.3)
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where fx is a partial derivative defined, for η = w[δ], by

fx

(
t
[δ]
i , η

)
:=

∂

∂x
f
(
t
[δ]
i , w

[δ]
)

=
∂

∂x
f
(
t
[δ]
i , δw + (1− δ)x

)
= (1− δ)

[
∂

∂η
f
(
t
[δ]
i , η

)]
.

When δ = 1, we have t[δ]i = ti, w[δ] = w, and fx
(
t
[δ]
i , η

)
≡ 0. Thus the formula (3.3)

becomes
x(k) = w + hf(ti, w),

independently of x(k−1), which is equivalent to the original Euler method.
On the other hand, if we set kmax = 1 with x(0) = w then from (3.3) we have a single-

iteration

x = x(1) = w +
hf

(
t
[δ]
i , w

)
1− hfx

(
t
[δ]
i , w

) . (3.4)

When f(t, y) is a linear map of y, the iteration (3.3) is reduced to the single iteration formula
(3.4).

The following theorem shows that convergence order of the proposed implicit method (3.2)
becomes 2 as the parameter δ goes to 1

2 .

Theorem 3.1. Suppose f(t, y), in the initial value problem (1.1), satisfies a Lipschitz condition
in the variable y with a Lipschitz constant L on a setD = {(t, y) | a ≤ t ≤ b, −∞ < y <∞}.
Furthermore, let f be twice continuously differentiable in D and let the exact solution y(t)
satisfy

|y′′(t)| ≤M , (t ∈ [a, b])

for some positive constant M . Then, for each i = 0, 1, 2, . . . , N − 1 the approximate solution
yi+1 (= x) to y(ti+1) obtained by the formula (3.2) with 0 < δ ≤ 1 satisfies

|y (ti+1)− yi+1| ≤
(
hM

L

∣∣∣∣δ − 1

2

∣∣∣∣+ C

L
h2

){
e(i+1)hL − 1

}
,

where C is a positive constant and the step size h is assumed to be small enough.

Proof. The exact solutions y(ti) and y(ti+1) at the nodes t = ti and t = ti+1, respectively,
satisfy

y(ti+1) = y(ti) + hf (ti, y(ti)) +
h2

2
f ′ (ti, y(ti)) + C1h

3 (3.5)

for some constant C1, where f ′ is a total derivative with respect to t such as

f ′(t, y(t)) = ft(t, y(t)) + fy(t, y(t))f(t, y(t)).
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From the Eq.(3.2) for the approximates yi = w and yi+1 = x to y(ti) and y(ti+1), respectively,
we have

yi+1 = yi + hf
(
t
[δ]
i , w

[δ]
)
. (3.6)

Then, from (3.5) and (3.6),

y(ti+1)− yi+1 = y (ti)− yi + h
{
f (ti, y(ti))− f

(
t
[δ]
i , w

[δ]
)}

+
h2

2
f ′ (ti, y(ti)) + C1h

3.

(3.7)
But, since

t
[δ]
i = δti + (1− δ)ti+1 = ti + (1− δ)h

and
w[δ] = δyi + (1− δ)yi+1 = yi + (1− δ)hf

(
t
[δ]
i , w

[δ]
)
,

it follows that, by Taylor’s theorem,

f
(
t
[δ]
i , w

[δ]
)
= f (ti, yi) + (1− δ)hft(ti, yi) + (1− δ)hf

(
t
[δ]
i , w

[δ]
)
fy(ti, yi) + C2h

2.

for some constant C2. That is,

f
(
t
[δ]
i , w

[δ]
)
=

1

1− (1− δ)hfy(ti, yi)

{
f (ti, yi) + (1− δ)hft(ti, yi)

}
+ C ′

2h
2

for a constant C ′
2 = C2/ {1− (1− δ)hfy(ti, yi)}. Then we have

f (ti, y(ti))− f
(
t
[δ]
i , w

[δ]
)

=
1

1− (1− δ)hfy(ti, yi)

{
[f (ti, y(ti))− f (ti, yi)]

− (1− δ)h [fy(ti, yi)f (ti, y(ti)) + ft(ti, yi)]
}
− C ′

2h
2

=
1

1− (1− δ)hfy(ti, yi)

{
[f (ti, y(ti))− f (ti, yi)]− (1− δ)hf ′ (ti, y(ti))

}
− C ′′

2h
2

for some constant C ′′
2 . The last equality results from fy(ti, yi)f (ti, y(ti)) + ft(ti, yi) =

fy(ti, y(ti))f (ti, y(ti)) + ft(ti, y(ti)) +O (h) = f ′ (ti, y(ti)) +O (h).
Therefore, from the Eq.(3.7)

|y (ti+1)− yi+1| ≤ |y (ti)− yi| +
h

1− (1− δ)hfy(ti, yi)
|f (ti, y(ti))− f (ti, yi))|

+
h2

1− (1− δ)hfy(ti, yi)

∣∣∣∣{1

2
− (1− δ)

2
hfy(ti, yi)− (1− δ)

}
f ′ (ti, y(ti))

∣∣∣∣
+ |C1 − C ′′

2 |h3.

By the assumptions,

|f (ti, y(ti))− f (ti, yi))| ≤ L |y(ti)− yi| ,
∣∣f ′ (ti, y(ti))∣∣ = ∣∣y′′ (ti)∣∣ ≤M
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and the step size h is supposed to be small enough. Thus we have

|y (ti+1)− yi+1| ≤ (1 + hL) |y (ti)− yi| + h2M

∣∣∣∣δ − 1

2
{1 + (1− δ)hfy(ti, yi)}

∣∣∣∣+ C3h
3

≤ (1 + hL) |y (ti)− yi| + h2M

∣∣∣∣δ − 1

2

∣∣∣∣+ Ch3

for some constants C3 > 0 and C = |1−δ|
2 M∥fy∥∞ + C3. Referring to Lemma 5.8 in [3], if

we set ai = |y(ti)− yi| (a0 = 0) with s = hL and t = h2M
∣∣δ − 1

2

∣∣+ Ch3, then

t

s
=
h

L
M

∣∣∣∣δ − 1

2

∣∣∣∣ + C

L
h2

and it follows that

|y (ti+1)− yi+1| ≤
t

s

{
e(i+1)hL − 1

}
=

(
hM

L

∣∣∣∣δ − 1

2

∣∣∣∣+ C

L
h2

){
e(i+1)hL − 1

}
.

This completes the proof. □

In addition, to surmise whether a numerical method applied to the stiff differential equation
can overcome the instability problem, we consider the A-stability introduced in the literature
[10, 11]. The A-stability result of the proposed method is given in the following theorem.

Theorem 3.2. The proposed method (3.2) is A-stable for every 0 < δ ≤ 1
2 .

Proof. According to the definition given in [10], the stability function ψ of the proposed
method (3.2) is

ψ(z) =
1 + δz

1− (1− δ)z
, z ∈ C.

Thus the region of absolute stability is

S =

{
z ∈ C | |ψ(z)| =

∣∣∣∣ 1 + δz

1− (1− δ)z

∣∣∣∣ < 1

}
=

{
z ∈ C

∣∣ Re(z) < (
1− 2δ

2

)
|z|2

}
.

For δ = 1
2 , in particular,

S =
{
z ∈ C

∣∣ Re(z) < 0
}
.

When δ ̸= 1
2 , setting z = x+ yi (x, y ∈ R) gives

S =

{
z ∈ C

∣∣ (
x− 1

1− 2δ

)2

+ y2 >

(
1

1− 2δ

)2
}

(3.8)
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for 0 < δ < 1
2 , and

S =

{
z ∈ C

∣∣ (
x− 1

1− 2δ

)2

+ y2 <

(
1

1− 2δ

)2
}

(3.9)

for 1
2 < δ < 1.

Since for every 0 < δ ≤ 1
2 the stability region includes the left half complex plane,

{z ∈ C | Re(z) < 0} (See Figure 4(a)), the method (3.2) is A-stable. □

Figure 4, plotted by the formulas (3.8) and (3.9), illustrates the boundary curves of the
stability regions of the proposed method (3.2) for some parameters 0 < δ ≤ 1

2 in (a) and
1
2 < δ ≤ 1 in (b). Each stability region means the outside of each corresponding curve in (a)
and the inside of each corresponding curve in (b). The greyed out area indicates, for example,
the case of δ = 1

2 in (a) and δ = 1 in (b). In fact, the cases of δ = 1
2 and δ = 1 correspond to

the proposed method (2.4) and the standard Euler method, respectively.

-4

-2

 2

 4

 1  2  4  8

δ ≈ 0
δ = 1/4

δ = 3/8

δ = 1/2

-4

-2

 0

 2

 4

-8 -4 -2 -1

δ = 1

δ = 3/4

δ = 5/8

(a) 0 < δ ≤ 1
2 (b) 1

2 < δ ≤ 1

FIGURE 4. Boundary curves of the stability regions of the method (3.2) with
0 < δ ≤ 1

2 in (a) and with 1
2 < δ ≤ 1 in (b).
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We recall the examples selected in the previous section(Example 1–Example 3). For t[δ]i and
w[δ] = η defined by (3.1) we have

fx(t
[δ]
i , η) =


2(1− δ)(1− t

[δ]
i )η, for Example 1

1− δ, for Example 2

−10(1− δ)e5t
[δ]
i (t

[δ]
i − η), for Example 3.

In numerical implementation of the proposed method we chose values of the parameter δ, for
each h = (b− a)/N , by the formula below.

δ∗ =

{
1
2 + h

6 , for Example 1 and Example 2

1
2 − h, for Example 3

which assures convergence order two, for h small enough, based on Theorem 3.1 and it also
assures the A-stability for the stiff problem(Example 3) based on Theorem 3.2. Moreover,
beyond expectations, the proposed method with δ = δ∗ results in the outstanding accuracy
of the approximate solutions. In practice, last columns in Table 1–Table 4 include numerical
errors of the proposed method (3.3) (or (3.4)) with δ = δ∗. In addition, Fig. 5–Fig. 7 show
l2–norm errors and l∞–norm errors with respect to the number of nodes, 10 ≤ N ≤ 100. It can
be seen that the proposed method with δ = δ∗ gives a higher accuracy than the other compared
second-order methods.

1x10
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1x10
-2

1x10
-1

 1

 10  20  40  60  80  100
(N)

T2

eq.(2.5)

eq.(3.3)
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1x10
-2

1x10
-1

1

 10  20  40  60  80  100
(N)

T2

eq.(2.5)

eq.(3.3)

(a) E2,N (b) E∞,N

FIGURE 5. Graphs of the l2-norm errors, E2,N in (a) and the l∞-norm errors,
E∞,N in (b), 10 ≤ N ≤ 100, for Example 1.
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(a) E2,N (b) E∞,N

FIGURE 6. Graphs of the l2-norm errors, E2,N in (a) and the l∞-norm errors,
E∞,N in (b), 10 ≤ N ≤ 100, for Example 2.
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FIGURE 7. Graphs of the l2-norm errors, E2,N in (a) and the l∞-norm errors,
E∞,N in (b), 10 ≤ N ≤ 100, for Example 3.
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The following fixed-point iteration can be used instead of the iteration (3.3) associated with
the Newton method to solve the proposed implicit Eq.(3.2).

x(k) = w + hf
(
t
[δ]
i , δw + (1− δ)x(k−1)

)
, k = 1, 2, . . . kmax (3.10)

with x(0) = w. Indeed, numerical experiments on Example 1 and Example 2 show that this
iteration gives the same results as the iteration (3.3), whereas the former requires more repeti-
tions than the latter to satisfy a given tolerance error. However, it can also be seen that, unlike
(3.3), the iteration (3.10) is not successful in obtaining convergent solutions to the stiff problem
like Example 3.

4. CONCLUSIONS

For numerical solutions of the initial value problem at equally spaced nodes, we proposed a
single-step implicit method based on the Euler method. It is proved that the convergence order
of the method is improved to 2. Numerical results for some selected examples illustrate that
the proposed method has the similar error behavior to the second-order Taylor method. The
proposed method is particularly effective for the stiff initial value problem even when the step
size is not very small. Moreover, using weighted averages with a parameter 0 < δ ≤ 1, we
extended the method. We have shown that for the parameter δ close enough to 1

2 the extended
method has convergence order two and it is A-stable for every 0 < δ ≤ 1

2 . It can be seen
that the extended method with an appropriately chosen parameter δ near 1

2 further improves
approximation errors.
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