DOI QR코드

DOI QR Code

Structural characterization and anti-inflammatory activity of fucoidan isolated from Ecklonia maxima stipe

  • Lee, Hyo-Geun (Department of Marine Life Sciences, Jeju National University) ;
  • Nagahawatta, D.P. (Department of Marine Life Sciences, Jeju National University) ;
  • Liyanage, N.M. (Department of Marine Life Sciences, Jeju National University) ;
  • Jayawardhana, H.H.A.C.K. (Department of Marine Life Sciences, Jeju National University) ;
  • Yang, Fengqi (Department of Marine Life Sciences, Jeju National University) ;
  • Je, Jun-Geon (Department of Marine Life Sciences, Jeju National University) ;
  • Kang, Min-Cheol (Research Group of Food Processing, Korea Food Research Institute) ;
  • Kim Hyun-Soo (National Marine Biodiversity Institute of Korea) ;
  • Jeon, You-Jin (Department of Marine Life Sciences, Jeju National University)
  • 투고 : 2022.08.03
  • 심사 : 2022.09.12
  • 발행 : 2022.09.15

초록

Enzyme-assisted hydrolysis is frequently used as a cost-effective and efficient method to obtain functional ingredients from bioresources. This study involved the enzyme-assisted hydrolyzation and purification of fucoidan from Ecklonia maxima stipe and the investigation of its anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Fucoidans of Viscozyme-assisted hydrolysate from E. maxima (EMSFs) harvested in Jeju, Korea. Structural and chemical characterizations were performed using fourier transform infrared spectroscopy, scanning electron microscope, and monosaccharide analysis. Among fucoidans, EMSF6 was rich in fucose and sulfate and had a similar structural character to commercial fucoidan. EMSF6 showed a strong inhibitory effect on nitric oxide generation in LPS-induced RAW 264.7 cells and significantly decreased the production of LPS-induced pro-inflammatory cytokines, including interleukin-6, interleukin-1β, and tumor necrosis factor α. The anti-inflammatory potential of EMSF6 was mediated through the downregulation of inducible nitric oxide synthase and cyclooxygenase-2 expression. Thus, fucoidans from E. maxima stipe are promising candidates for functional food products.

키워드

과제정보

This research was a part of the project entitled "Discovering a process technology to develop alginic acid in mass scale for domestic uses," funded by the Ministry of Oceans and Fisheries, Korea (20220560). Further, the Korea Research Program 2022M00500 extended its support via the National Marine Biodiversity Institute of Korea.

참고문헌

  1. Altun, H. K., Ermumcu, M. S. K. & Kurklu, N. S. 2021. Evaluation of dietary supplement, functional food and herbal medicine use by dietitians during the COVID-19 pandemic. Public Health Nutr. 24:861-869. https://doi.org/10.1017/S1368980020005297
  2. Anderson, R. J., Carrick, P., Levitt, G. J. & Share, A. 1997. Holdfasts of adult kelp Ecklonia maxima provide refuges from grazing for recruitment of juvenile kelps. Mar. Ecol. Prog. Ser. 159:265-273. https://doi.org/10.3354/meps159265
  3. Bolton, J. J., Anderson, R. J., Smit, A. J. & Rothman, M. D. 2012. South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. Afr. J. Mar. Sci. 34:147-151. https://doi.org/10.2989/1814232X.2012.675125
  4. Camacho, F., Macedo, A. & Malcata, F. 2019. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar. Drugs 17:312. https://doi.org/10.3390/md17060312
  5. Carrano, M. W., Yarimizu, K., Gonzales, J. L., Cruz-Lopez, R., Edwards, M. S., Tymon, T. M., Kupper, F. C. & Carrano, C. J. 2020. The influence of marine algae on iodine speciation in the coastal ocean. Algae 35:167-176. https://doi.org/10.4490/algae.2020.35.5.25
  6. Chen, P. -H., Chiang, P. -C., Lo, W. -C., Su, C. -W., Wu, C. -Y., Chan, C. -H., Wu, Y. -C., Cheng, H. -C., Deng, W. -P., Lin, H. -K. & Peng, B. -Y. 2021. A novel fucoidan complex-based functional beverage attenuates oral cancer through inducing apoptosis, G2/M cell cycle arrest and retarding cell migration/invasion. J. Funct. Foods 85:104665. https://doi.org/10.1016/j.jff.2021.104665
  7. Citkowska, A., Szekalska, M. & Winnicka, K. 2019. Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Mar. Drugs 17:458. https://doi.org/10.3390/md17080458
  8. Crouch, I. J. & Van Staden, J. 1991. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J. Plant Physiol. 137:319-322. https://doi.org/10.1016/S0176-1617(11)80138-0
  9. Daub, C. D., Mabate, B., Malgas, S. & Pletschke, B. I. 2020. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase. Int. J. Biol. Macromol. 151:412-420. https://doi.org/10.1016/j.ijbiomac.2020.02.161
  10. Fernando, I. P. S., Sanjeewa, K. K. A., Lee, H. G., Kim, H. -S., Vaas, A. P. J. P., De Silva, H. I. C., Nanayakkara, C. M., Abeytunga, D. T. U., Lee, D. -S., Lee, J. -S. & Jeon, Y. -J. 2020. Fucoidan purified from Sargassum polycystum induces apoptosis through mitochondria-mediated pathway in HL-60 and MCF-7 cells. Mar. Drugs 18:196. https://doi.org/10.3390/md18040196
  11. Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Lee, W. W., Kim, H. -S., Ranasinghe, P., Gunasekara, U. K. D. S. S. & Jeon, Y. -J. 2018. Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction. Food Sci. Biotechnol. 27:1761-1769. https://doi.org/10.1007/s10068-018-0406-1
  12. Fitton, J. H., Stringer, D. N., Park, A. Y. & Karpiniec, S. S. 2019. Therapies from fucoidan: new developments. Mar. Drugs 17:571. https://doi.org/10.3390/md17100571
  13. Hamid, H., Thakur, A. & Thakur, N. S. 2021. Role of functional food components in COVID-19 pandemic: a review. Ann. Phytomed. Int. J. 10:S240-S250.
  14. Horwitz, W., Chichilo, P. & Reynolds, H. 1970. Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washinton, DC, 1015 pp.
  15. Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121. https://doi.org/10.4490/algae.2020.35.5.15
  16. Jayawardena, T. U., Fernando, I. P. S., Lee, W. W., Sanjeewa, K. K. A., Kim, H. -S., Lee, D. -S. & Jeon, Y. -J. 2019. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives: inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int. J. Biol. Macromol. 131:614-623. https://doi.org/10.1016/j.ijbiomac.2019.03.105
  17. Jayawardena, T. U., Sanjeewa, K. K. A., Nagahawatta, D. P., Lee, H. -G., Lu, Y. -A., Vaas, A. P. J. P., Abeytunga, D. T. U., Nanayakkara, C. M., Lee, D. -S. & Jeon, Y. -J. 2020. AntiInflammatory effects of sulfated polysaccharide from Sargassum swartzii in macrophages via blocking TLR/NF-κb signal transduction. Mar. Drugs 18:601. https://doi.org/10.3390/md18120601
  18. KHSA (Korea Health Supplements Association). 2021. Sales revenue of world functional food products in 2019. Available from: https://www.khsa.or.kr/user/info/InfoExternalHealth.do. Accessed Aug 4, 2022.
  19. Ko, S. J., Kim, Y. K., Hong, S. W., Kang, M. S., Park, C. S., Hwang, E. K. & Lee, Y. D. 2020. Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta). Algae 35:123-131. https://doi.org/10.4490/algae.2020.35.5.27
  20. Lange, K. W. 2021. Food science and COVID-19. Food Sci. Hum. Wellness 10:1-5. https://doi.org/10.1016/j.fshw.2020.08.005
  21. Lee, H. -G., Je, J. -G., Hwang, J., Jayawardena, T. U., Nagahawatta, D., Lu, Y. A., Kim, H. -S., Kang, M. -C., Lee, D. -S. & Jeon, Y. -J. 2021. Comparision of antioxidant and antiinflammatory activities of enzyme assisted hydrolysate from Ecklonia maxima blades and stipe. Fish. Aquat. Sci. 24:197-206. https://doi.org/10.47853/FAS.2021.e20
  22. Lee, S. M., Kim, N. -H., Ji, Y. K., Kim, Y. N., Jeon, Y. -J., Heo, J. D., Jeong, E. J. & Rho, J. -R. 2020. Sulfoquinovosylmonoacylglycerols regulating intestinal inflammation in coculture system from the brown alga Turbinaria ornata. Algae 35:201-212. https://doi.org/10.4490/algae.2020.35.5.23
  23. Liu, X., Su, J., Wang, G., Zheng, L., Wang, G., Sun, Y., Bao, Y., Wang, S. & Huang, Y. 2021. Discovery of phenolic glycoside from Hyssopus cuspidatus attenuates LPS-induced inflammatory responses by inhibition of iNOS and COX-2 expression through suppression of NF-κB activation. Int. J. Mol. Sci. 22:12128. https://doi.org/10.3390/ijms222212128
  24. Mayer, A. M. S., Guerrero, A. J., Rodriguez, A. D., TaglialatelaScafati, O., Nakamura, F. & Fusetani, N. 2019. Marine pharmacology in 2014-2015: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities: affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 18:5. https://doi.org/10.3390/md18010005
  25. Rengasamy, K. R. R., Aderogba, M. A., Amoo, S. O., Stirk, W. A. & Van Staden, J. 2013. Potential antiradical and alphaglucosidase inhibitors from Ecklonia maxima (Osbeck) Papenfuss. Food Chem. 141:1412-1415. https://doi.org/10.1016/j.foodchem.2013.04.019
  26. Rengasamy, K. R., Kulkarni, M. G., Stirk, W. A. & Van Staden, J. 2015. Eckol: a new plant growth stimulant from the brown seaweed Ecklonia maxima. J. Appl. Phycol. 27:581-587. https://doi.org/10.1007/s10811-014-0337-z
  27. Rothman, M. D., Anderson, R. J. & Smit, A. J. 2006. The effects of harvesting of the South African kelp (Ecklonia maxima) on kelp population structure, growth rate and recruitment. J. Appl. Phycol. 18:335-341. https://doi.org/10.1007/s10811-006-9036-8
  28. Sanjeewa, K. K. A., Jayawardena, T. U., Kim, H. -S., Kim, S. -Y., Fernando, I. P. S., Wang, L., Abetunga, D. T. U., Kim, W.-S., Lee, D. -S. & Jeon, Y. -J. 2019. Fucoidan isolated from Padina commersonii inhibit LPS-induced inflammation in macrophages blocking TLR/NF-κB signal pathway. Carbohydr. Polym. 224:115195. https://doi.org/10.1016/j.carbpol.2019.115195
  29. Sanjeewa, K. K. A., Kang, N., Ahn, G., Jee, Y., Kim, Y. -T. & Jeon, Y. -J. 2018. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: a review. Food Hydrocoll. 81:200-208. https://doi.org/10.1016/j.foodhyd.2018.02.040
  30. Stirk, W. A., Tarkowska, D., Turecova, V., Strnad, M. & Van Staden, J. 2014. Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 26:561-567. https://doi.org/10.1007/s10811-013-0062-z
  31. Wang, L., Jayawardena, T. U., Yang, H. -W., Lee, H. -G. & Jeon, Y. -J. 2020. The potential of sulfated polysaccharides isolated from the brown seaweed Ecklonia maxima in cosmetics: antioxidant, anti-melanogenesis, and photoprotective activities. Antioxidants 9:724. https://doi.org/10.3390/antiox9080724
  32. Wang, L., Oh, J. Y., Hwang, J., Ko, J. Y., Jeon, Y. -J. & Ryu, B. 2019. In vitro and in vivo antioxidant activities of polysaccharides isolated from celluclast-assisted extract of an edible brown seaweed, Sargassum fulvellum. Antioxidants 8:493. https://doi.org/10.3390/antiox8100493
  33. Yang, L., Cao, L., Li, C., Li, X., Wang, J., Chen, H. & He, J. 2022. Hostaflavone A from Hosta plantaginea (lam.) Asch. blocked NF-κB/iNOS/COX-2/MAPKs/Akt signaling pathways in LPS-induced RAW 264.7 macrophages. J. Ethnopharmacol. 282:114605. https://doi.org/10.1016/j.jep.2021.114605