고성능 페로브스카이트 소자 구조 설계를 위한 재료 공학

  • 김병기 (중앙대학교 융합공학과) ;
  • 임지현 (중앙대학교 융합공학과) ;
  • 김진영 (중앙대학교 융합공학과) ;
  • 천지윤 (중앙대학교 융합공학과) ;
  • 왕동환 (중앙대학교 융합공학과)
  • 발행 : 2022.10.01

초록

키워드

참고문헌

  1. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. Walsh, Nano Lett., 14, 2584 (2014). DOI https://doi.org/10.1021/nl500390f.
  2. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and Sundstrom, V., J. Am. Chem. Soc., 136, 5189 (2014). DOI https://doi.org/10.1021/ja412583t.
  3. N. G. Park, Mater. Today, 18, 65 (2015). DOI https://doi.org/10.1016/j.mattod.2014.07.007
  4. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). DOI https://doi.org/10.1021/ja809598r.
  5. National Renewable Energy Labs (NREL), Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html. (2022).
  6. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, and S. Il Seok, Nature, 598, 444 (2021). DOI https://doi.org/10.1038/s41586-021-03964-8.
  7. A. Ullah, K. H. Park, H. D. Nguyen, Y. Siddique, S. F. A. Shah, H. Tran, S. Park, S. I. Lee, K. K. Lee, C. H. Han, K. Kim, S. J. Ahn, I. Jeong, Y. S. Park, and S. Hong, Adv. Energy Mater., 12, 2103175 (2022). DOI https://doi.org/10.1002/aenm.202103175.
  8. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, Energy Environ. Sci., 8, 1602 (2015). DOI https://doi.org/10.1039/C5EE00120J.
  9. Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long, and Z. Zhu, Science, 376, 416 (2022). DOI https://doi.org/10.1126/science.abm8566.
  10. Y. Zhao, Q. Ye, Z. Chu, F. Gao, X. Zhang, and J. You, Energy Environ. Mater. 2, 93 (2019). DOI https://doi.org/10.1002/eem2.12042.
  11. L. Lin, T. W. Jones, T. C. J. Yang, N. W. Duffy, J. Li, L. Zhao, B. Chi, X. Wang, and G. J. Wilson, Adv. Funct. Mater. 31, 2008300 (2021). 2008300. DOI https://doi.org/10.1002/adfm.202008300.
  12. A. K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019). DOI https://doi.org/10.1021/acs.chemrev.8b00539.
  13. Y. Wang, C. Duan, J. Li, W. Han, M. Zhao, L. Yao, Y. Wang, C. Yan, and T. Jiu, ACS Appl. Mater. Interfaces. 10, 20128 (2018), 20128-20135. DOI https://doi.org/10.1021/acsami.8b03444.
  14. X. Hu, C. Liu, Z. Zhang, X. F. Jiang, J. Garcia, C. Sheehan, L. Shui, S. Priya, G. Zhou, S. Zhang, and K. Wang, Adv. Sci. 7, 2001285 (2020). DOI https://doi.org/10.1002/advs.202001285.
  15. J. Lim, W. Jang, M. S. Kim, M. Ji, Y. I. Lee, and D. H. Wang, J. Alloys Compd. 846, 156329 (2020). DOI https://doi.org/10.1016/j.jallcom.2020.156329.
  16. Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, and A. K. Y. Jen, Adv. Mater. 28, 6478 (2016). DOI https://doi.org/10.1002/adma.201600619.
  17. Z. Jia, H. Zhong, J. Shen, Z. Yu, J. Tao, S. Yin, X. Liu, S. Chen, S. Yang, and W. Kong, Chem. Eng. J., 446 136897 (2022). DOI https://doi.org/10.1016/j.cej.2022.136897
  18. X. Zhou, M. Hu, C. Liu, L. Zhang, X. Zhong, X. Li, Y. Tian, C. Cheng, and B. Xu, Nano Energy, 63 103866 (2019). DOI https://doi.org/10.1016/j.nanoen.2019.103866
  19. W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurisic, W. K. Chan, and Z. B. He, Adv. Energy Mater. 7, 1700722 (2017). DOI https://doi.org/10.1002/aenm.201700722.
  20. Y. Li, H. Xie, E. L. Lim, A. Hagfeldt, and D. Bi, Adv. Energy Mater. 12, 2102730 (2022). DOI https://doi.org/10.1002/aenm.202102730.
  21. S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda, J. B. Puel, Y. Vaynzof, J. F. Guillemoles, D. Ory, and G. Grancini, Nat Commun 13, 2868 (2022). DOI https://doi.org/10.1038/s41467-022-30426-0
  22. L. Xie, Z. Cao, J. Wang, A. Wang, S. Wang, Y. Cui, Y. Xiang, X. Niu, F. Hao, and L. Ding, Nano Energy 74, 104846 (2020). DOI https://doi.org/10.1016/j.nanoen.2020.104846.
  23. Q. Hu, W. Chen, W. Yang, Y. Li, Y. Zhou, B. W. Larson, J. C. Johnson, Y. H. Lu, W. Zhong, J. Xu, L. Klivansky, C. Wang, M. Salmeron, A. B. Djurisic, F. Liu, Z. He, R. Zhu, and T. P. Russell, Joule. 4, 1575 (2020). DOI https://doi.org/10.1016/j.joule.2020.06.007.
  24. C. Li, F. Xu, Y. Li, N. Li, H. Yu, B. Yuanb, Z. Chen, L. Li, and B. Cao, Sol. Energy. 233, 271 (2022). DOI https://doi.org/10.1016/j.solener.2022.01.035.
  25. H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu, D. Shen, Y. Zhang, H. T. Chandran, J. Hao, C. S. Lee, X. Lu, Z. Zheng, and J. Huang, G. Li, Adv. Mater. 2204366 (2022). DOI https://doi.org/10.1002/adma.202204366.
  26. T. Li, Y. Wu, Z. Liu, Y. Yang, H. Luo, L. Li, P. Chen, X. Gao, and H. Tan, Nanotechnology 33, 375205 (2022). DOI http://doi.org/10.1088/1361-6528/ac76d5.
  27. C. Zhang, H. Gong, Q. Song, C. Liang, F. You, Z. He, and D. Li, Org. Electron. 108, 106548 (2022). DOI https://doi.org/10.1016/j.orgel.2022.106548.
  28. J. Cao, H. L. Loi, Y. Xu, X. Guo, N. Wang, C. K. Liu, T. Wang, H. Cheng, Y. Zhu, M. G. Li, W. Y. Wong, and F. Yan, Adv. Mater. 34, 2107729 (2022). DOI https://doi.org/10.1002/adma.202107729.
  29. X. Zheng, J. Troughton, N. Gasparini, Y. Lin, M. Wei, Y. Hou, J. Liu, K. Song, Z. Chen, C. Yang, B. Turedi, A. Y. Alsalloum, J. Pan, J. Chen, A. A. Zhumekenov, T. D. Anthopoulos, Y. Han, D. Baran, and O. M. Bakr, Joule, 3, 1963 (2019). DOI https://doi.org/10.1016/j.joule.2019.05.005.
  30. W. Yang, R. Su, D. Luo, Q. Hu, F. Zhang, Z. Xu, Z. Wang, J. Tang, Z. Lv, X. Yang, Y. Tu, W. Zhang, H. Zhong, Q. Gong, T. P. Russell, and R. Zhu, Nano Energy., 67, 104189 (2020). DOI https://doi.org/10.1016/j.nanoen.2019.104189.
  31. C. Xiao, Q. Zhao, C. Jiang, Y. Sun, M. M. Al-Jassim, S. U. Nanayakkara, and J. M. Luther, Nano Energy, 78, 105319 (2020). DOI https://doi.org/10.1016/j.nanoen.2020.105319.