DOI QR코드

DOI QR Code

Three-phase modular boost-buck inverter analysis and experimental validation

  • Han, Yongjie (School of Automotive Studies, Tongji University) ;
  • Wu, Zhihong (School of Automotive Studies, Tongji University)
  • 투고 : 2022.01.03
  • 심사 : 2022.05.04
  • 발행 : 2022.09.20

초록

A modular three-phase boost-buck inverter (BBI) is presented in this paper. The BBI has the advantages of voltage step-up/step-down capability, high-quality/low-harmonic output voltage/current waveforms and high efficiency. The operation principle, semiconductor stresses including voltage stress and current stress, conduction loss, and switching loss are analyzed in detail. The performance of the BBI is experimentally validated on a 10 kW prototype based on SiC MOSFETs operating at a switching frequency of 50 kHz. Comparisons are made between the BBI and the conventional two-level voltage source inverter with a boost dc/dc stage. The nominal efficiency of the BBI is 0.9% higher and the THD of the load current is 7.2 times lower than those of the conventional topology.

키워드

참고문헌

  1. Wang, S., Lehn, P. W.: A 3-phase electric vehicle charger integrated with dual inverter drive. In: IEEE Transactions on Transportation Electrification, Early Access, 2021.
  2. Krastev, I., Tricoli, P.: Boost Multilevel Cascade Inverter for hydrogen fuel cell light railway vehicles. In: IEEE Transactions on Industrial Electronics, Early Access, 2021.
  3. Lee, J.-D., Park, D.-H., Kim, R.-Y.: Novel variable switching frequency PWM strategy for a SiC-MOSFET-based electric vehicle inverter to increase battery usage time. In: IEEE Access, 2021.
  4. Kolletzki, M., Denk, M., Anderson, D., Reissenweber, L., Stadler, A.: Inverter design study for a battery cooling compressor for 800 V electric vehicles with focus on efficiency and inverter volume. In: PCIM Europe digital days 2021; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 2021, pp. 1-9.
  5. Jamwal, P.S., Singh, S., Jain, S.: Three-level inverters for induction motor driven electric vehicles. In: 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 2021, pp. 1-6.
  6. Song, C.-H., Song, I.-S., Shin, H.-S., Lee, C.-H., Kim, K.-C.: A design of IPMSM for high-power electric vehicles with widefield-weakening control region. IEEE Trans. Magn. 58(2), 1-5 (2022). (Art no. 8700305)
  7. Chen, S., Ding, S., Shen, S., Dai, Y., Yang, Z., Zhang, J.: Influence of field weakening control on electromagnetic force and electromagnetic vibration of SPMSMs. In: 2021 IEEE 12th Energy Conversion Congress & Exposition-Asia (ECCE-Asia), Singapore, Singapore, 2021, pp. 221-225
  8. Wang, B., Zhang, J., Yu, Y., Zhang, X., Xu, D.: Unified complex vector field-weakening control for induction motor high-speed drives. IEEE Trans. Power Electron. 36(6), 7000-7011 (2021) https://doi.org/10.1109/TPEL.2020.3034246
  9. Muta, K., Yamazaki, M., Tokieda, J.: Development of new-generation hybrid system THS II-drastic improvement of power performance and fuel economy (2004)
  10. Lai, J.-S., Nelson, D.: Energy management power converters in hybrid electric and fuel cell vehicles. Proc. IEEE 95(4), 766-777 (2007) https://doi.org/10.1109/JPROC.2006.890122
  11. Estima, J., Marques Cardoso, A.: Efficiency analysis of drive train topologies applied to electric/hybrid vehicles. IEEE Trans. Veh. Technol. 61(3), 1021-1031 (2012) https://doi.org/10.1109/TVT.2012.2186993
  12. Burress, T., Campbell, S.: Benchmarking EV and HEV power electronics and electric machines. In: Proceedings of IEEE Transportation and Electrification Conference on Expo., pp. 1-6, 2013.
  13. Burress, T.A., Campbell, S.L., Coomer, C., Ayers, C.W., Wereszczak, A.A., Cunningham, J.P. et al.: Evaluation of the 2010 Toyota Prius hybrid synergy drive system. In: Power Electron. Elect. Mach. Res. Facility Oak Ridge Nat. Lab., 2011.
  14. Chen, H., Kim, H., Erickson, R., Maksimovic, D.: Electrified automotive powertrain architecture using composite dc-dc converters. IEEE Trans. Power Electron. 32(1), 98-116 (2017) https://doi.org/10.1109/TPEL.2016.2533347
  15. Kim, H. et al.: SiC-MOSFET composite boost converter with 22 kW/L power density for electric vehicle application. In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 134-141
  16. Fernandez, M.C., Ghosh, A., Erickson, R.W.: Drive cycle based multi-objective optimization of 50 kW SiC composite DC-DC converter design for electrified automotive applications. In: 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2019, pp. 164-170.
  17. Ghosh, A., Erickson, R.W.: Drive cycle based reliability analysis of composite DC-DC converters for electric vehicles. In: 2020 IEEE Transportation Electrification Conference & Expo (ITEC), 2020, pp. 544-549.
  18. Torres, R.A., Dai, H., Jahns, T.M., Sarlioglu, B.: Operation and analysis of current-source inverters using dual-gate four-quadrant wide-bandgap power switches. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2353-2360, 2019.
  19. Chen, F., Feng, W., Ding, H., Lee, S., Jahns, T.M., Sarlioglu, B.: comprehensive efficiency analysis of current source inverter based SPM machine drive system for traction applications. In: Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3002-3009, 2020.
  20. Su, G., Ning, P.: Loss modeling and comparison of VSI and RBIGBT based CSI in traction drive applications. In: Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-7, 2013.
  21. Antivachis, M., Kleynhans, N., Kolar, J.W.: Three-phase sinusoidal output buck-boost GaN Y-inverter for advanced variable speed AC drives. In: IEEE Journal of Emerging and Selected Topics in Power Electronics.
  22. Antivachis, M., Bortis, D., Schrittwieser, L., Kolar, J.W.: Threephase buck-boost Y-inverter with wide DC input voltage range. In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 1492-1499
  23. Menzi, D., Bortis, D., Kolar, J.W.: A new bidirectional threephase phase-modular boost-buck AC/DC converter. In: 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1-8.
  24. Hava, A.M., Kerkman, R.J., Lipo, T.A.: Simple analytical and graphical methods for carrier-based PWM-VSI drives. IEEE Trans. Power Electron. 14(1), 49-61 (1999) https://doi.org/10.1109/63.737592
  25. Kasper, M., Burkart, R.M., Deboy, G., Kolar, J.W.: ZVS of power MOSFETs revisited. IEEE Trans. Power Electron. 31(12), 8063-8067 (2016)
  26. Guacci, M., et al.: Experimental characterization of silicon and gallium nitride 200 V power semiconductors for modular/multilevel converters using advanced measurement techniques. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2238-2254 (2020) https://doi.org/10.1109/JESTPE.2019.2944268
  27. HIOKI Corporation, Technical Note: High-precision Power Measurement of SiC Inverters, Online: https://www.hioki.com/download/31448
  28. Darwish, A., Massoud, A.M., Holliday, D., Ahmed, S., Williams, B.W.: Single-stage three-phase differential-mode buck-boost inverters with continuous input current for PV applications. IEEE Trans. Power Electron. 31(12), 8218-8236 (2016)
  29. Chen, M., Yin, C., Ming, L., Loh, P.C.: A single-stage three-phase split-Y-source inverter. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 2808-2813
  30. Diab, M.S., Elserougi, A.A., Massoud, A.M., Abdel-Khalik, A.S., Ahmed, S.: A pulsewidth modulation technique for high-voltage gain operation of three-phase Z-source inverters. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 521-533 (2016) https://doi.org/10.1109/JESTPE.2015.2472528