DOI QR코드

DOI QR Code

Comparison of the Korean Activity Status Index with cardiopulmonary exercise test in patients with acute myocardial infarction

  • Youn Ji Kim (Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University College of Medicine) ;
  • Jun Hwan Choi (Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University College of Medicine) ;
  • Bo Ryun Kim (Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital) ;
  • So Young Lee (Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University College of Medicine) ;
  • Hyun Jung Lee (Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University College of Medicine) ;
  • Song-Yi Kim (Division of Cardiology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine) ;
  • Jae-Geun Lee (Division of Cardiology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine)
  • Received : 2022.03.04
  • Accepted : 2022.06.27
  • Published : 2022.08.31

Abstract

This study aimed to compare the Korean Activity Status Index (KASI) with the cardiopulmonary exercise test (CPET) among patients with acute myocardial infarction. A total of 2,268 patients (85.4% male; mean age, 59.3±10.2 years; range, 23-90 years) diagnosed with acute myocardial infarction were enrolled in the Regional Center Myocardial Infarction Registry between July 2016 and June 2019. The KASI is a tool used to measure functional capacity by asking patients about their ability to perform specific activities and then scoring their responses. In contrast, CPET is the gold standard for assessing the objective functional capacity in patients undergoing cardiac rehabilitation. Peak oxygen uptake (VO2peak) was used to analyze the correlation. Patients who completed two consecutive KASI and CPET evaluations during their first (KASI_1, VO2peak_1) and second visits (KASI_2, VO2peak_2) for cardiac rehabilitation were included in the study. The mean KASI_1 and KASI_2 scores were 43.3±14.3 and 49.8±13.9, respectively, and the mean VO2peak_1 and VO2peak_2 scores were 25.9±8.0 and 28.5±8.3, respectively. Both the KASI scores were significantly correlated with the measured VO2peak during each visit, with correlation coefficients of 0.385 (P<0.001) and 0.346 (P<0.001), respectively. Moreover, the KASI score and VO2peak had a linear relationship (VO2peak_1=0.22×KASI_1+16.5, P<0.001; VO2peak_2=0.21×KASI_2+18.2,VO2peak_2=0.21×KASI_2+18.2, P<0.001). This study revealed that the KASI is a valid measure for the follow-up evaluation of the functional capacity of patients. These findings suggest that VO2peak can be predicted using the KASI score in patients who do not undergo CPET.

Keywords

Acknowledgement

This work was supported by a research grant from Jeju National University Hospital in 2019.

References

  1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1736-88. 
  2. Kim RB, Kim HS, Kang DR, Choi JY, Choi NC, Hwang S, et al. The trend in incidence and case-fatality of hospitalized acute myocardial infarction patients in Korea, 2007 to 2016. J Korean Med Sci 2019;34:e322. 
  3. Levine DA, Davydow DS, Hough CL, Langa KM, Rogers MA, Iwashyna TJ. Functional disability and cognitive impairment after hospitalization for myocardial infarction and stroke. Circ Cardiovasc Qual Outcomes 2014;7:863-71. 
  4. Mori M, Djulbegovic M, Hajduk AM, Holland ML, Krumholz HM, Chaudhry SI. Changes in functional status and health-related quality of life in older adults after surgical, interventional, or medical management of acute myocardial infarction. Semin Thorac Cardiovasc Surg 2021;33:72-81. 
  5. Piepoli MF, Corra U, Benzer W, Bjarnason-Wehrens B, Dendale P, Gaita D, et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil 2010;17:1-17. 
  6. Dalal HM, Doherty P, Taylor RS. Cardiac rehabilitation. BMJ 2015;351:h5000. 
  7. Yohannes AM, Doherty P, Bundy C, Yalfani A. The long-term benefits of cardiac rehabilitation on depression, anxiety, physical activity and quality of life. J Clin Nurs 2010;19:2806-13. 
  8. Grace SL, Turk-Adawi KI, Contractor A, Atrey A, Campbell N, Derman W, et al. Cardiac rehabilitation delivery model for low-resource settings. Heart 2016;102:1449-55. 
  9. Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J 2011;162:571-584.e2. 
  10. Piotrowicz R, Wolszakiewicz J. Cardiac rehabilitation following myocardial infarction. Cardiol J 2008;15:481-7. 
  11. Arena R, Myers J, Williams MA, Gulati M, Kligfield P, Balady GJ, et al. Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation 2007;116:329-43. 
  12. Skalski J, Allison TG, Miller TD. The safety of cardiopulmonary exercise testing in a population with high-risk cardiovascular diseases. Circulation 2012;126:2465-72. 
  13. Milani RV, Lavie CJ, Mehra MR, Ventura HO. Understanding the basics of cardiopulmonary exercise testing. Mayo Clin Proc 2006;81:1603-11. 
  14. Shepherd CW, While AE. Cardiac rehabilitation and quality of life: a systematic review. Int J Nurs Stud 2012;49:755-71. 
  15. Li MH, Bolshinsky V, Ismail H, Ho KM, Heriot A, Riedel B. Comparison of Duke Activity Status Index with cardiopulmonary exercise testing in cancer patients. J Anesth 2018;32:576-84. 
  16. Sung J, On YK, Chae IH, Kim HS, Sohn DW, Oh BH, et al. Development of Korean Activity Scale/Index(KASI). Korean Circulation J 2000;30:1004-9. 
  17. Kim RB, Hwang JY, Park HW, Her AY, Lee JH, Kim MH, et al. contemporary status of acute myocardial infarction in Korean patients: Korean Registry of Acute Myocardial Infarction for Regional Cardiocerebrovascular Centers. J Clin Med 2021;10:498. 
  18. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 2010;122:191-225. 
  19. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10. 
  20. Ludbrook J. Confidence in Altman-Bland plots: a critical review of the method of differences. Clin Exp Pharmacol Physiol 2010;37:143-9. 
  21. Reed JL, Cotie LM, Cole CA, Harris J, Moran B, Scott K, et al. Submaximal exercise testing in cardiovascular rehabilitation settings (BEST Study). Front Physiol 2020;10:1517. 
  22. Ravani P, Kilb B, Bedi H, Groeneveld S, Yilmaz S, Mustata S. The Duke Activity Status Index in patients with chronic kidney disease: a reliability study. Clin J Am Soc Nephrol 2012;7:573-80. 
  23. Stokes JW, Wanderer JP, McEvoy MD. Significant discrepancies exist between clinician assessment and patient self-assessment of functional capacity by validated scoring tools during preoperative evaluation. Perioper Med (Lond) 2016;5:18. 
  24. Rankin SL, Briffa TG, Morton AR, Hung J. A specific activity questionnaire to measure the functional capacity of cardiac patients. Am J Cardiol 1996;77:1220-3. 
  25. Samayoa L, Grace SL, Gravely S, Scott LB, Marzolini S, Colella TJ. Sex differences in cardiac rehabilitation enrollment: a meta-analysis. Can J Cardiol 2014;30:793-800. 
  26. Im HW, Baek S, Jee S, Ahn JM, Park MW, Kim WS. Barriers to outpatient hospital-based cardiac rehabilitation in Korean patients with acute coronary syndrome. Ann Rehabil Med 2018;42:154-65.