DOI QR코드

DOI QR Code

Effect of electropolishing process time on electrochemical characteristics in seawater for austenitic stainless steel

오스테나이트 스테인리스강의 해수에서 전기화학적 특성에 미치는 전해연마시간의 영향

  • Hwang, Hyun-Kyu (Graduate school, Mokpo national maritime university) ;
  • Shin, Dong-Ho (Graduate school, Mokpo national maritime university) ;
  • Heo, Ho-Seong (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 황현규 (목포해양대학교 대학원) ;
  • 신동호 (목포해양대학교 대학원) ;
  • 허호성 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.08.19
  • Accepted : 2022.08.23
  • Published : 2022.08.31

Abstract

Electropolishing is a surface finishing treatment that compensates for the disadvantages of the mechanical polishing process. It not only has a smooth surface, but also improves corrosion resistance. Therefore, the purpose of this investigation is to examine the corrosion resistance and electrochemical characteristics in seawater of UNS S31603 with electropolishing process time. The roughness improvement rate after electropolishing was improved by about 78% compared to before polishing, indicating that the electropolishing is effective. As a result of potential measuring of mechanical polishing and electropolishing, the potential of electropolishing was nobler than the mechanical polishing condition. As a result of calculating the corrosion current density after potentiodynamic polarization experiment with electropolishing conditions, the corrosion current density of mechanical polishing was about 6.4 times higher than that of electropolishing. After potentiodynamic polarization experiment with electropolishing conditions, the maximum damage depth of mechanical polishing was about 2.2 times higher than that of electropolishing(7 minutes). In addition, the charge transfer resistance of the specimen electropolished for 7 minutes was the highest, indicating improved corrosion resistance.

Keywords

Acknowledgement

이 논문은 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(선박 배출 대기오염물질 동시저감 후처리시스템 실증 및 인증체계 구축).

References

  1. K. J. Reynolds, Exhaust gas cleaning selection guide, Ship operations cooperative program, The Glosten Associates, Washington DC, 3 (2011)
  2. H. K. Hwang, S. J. Kim, Effect of temperature on electrochemical characteristics of stainless steel in green death solution using cyclic potentiodynamic polarization test, Corros. Sci. Tech., 20 (2021) 266-280. https://doi.org/10.14773/CST.2021.20.5.266
  3. B. S. Phull, W. L. Mathay, R. W. Ross, Corrosion resistance of duplex and 4-6% Mo-Containing stainless steels in FGD scrubber absorber slurry environments, Corros. Sci.,578 (2000)
  4. J. W. Lee, S. J. Kim, Effects of cooling rates of coating layer on microstructures and corrosion behaviors of Zn-Al-Mg alloy coated steel sheets, Corros. Sci. Tech., 21 (2022) 221-229.
  5. S. H Kim, J. H. Cho, S. B. Kim, J. S Choi, Electropolishing characteristics of stainless steel for industrial application, J. Korean Inst. Surf. Eng., 49 (2016) 363-367. https://doi.org/10.5695/JKISE.2016.49.4.363
  6. S. H Kim, J. H. Cho, S. B. Kim, J. S Choi, Electropolishing characteristics of stainless steel for industrial application, J. Korean Inst. Surf. Eng., 49 (2016) 363-367. https://doi.org/10.5695/JKISE.2016.49.4.363
  7. Y. B. Patil, S. R. Dulange, A review on electropolishing process and its affection parameters, Int. J. Adv. Res. Sci. Eng., 3 (2014) 246-252.
  8. E. S. Lee, Machining characteristics of the electropolishing of stainless steel (STS316L), Int. J Adv. Manuf. Technol., 16 (2000) 591-599. the electropolishing of stainless steel (STS316L), Int. J Adv. Manuf. Technol., 16 (2000) 591-599. https://doi.org/10.1007/s001700070049
  9. S. J. Lee, J. J. Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, J. Mater. Process Technol., 140 (2003) 206-210. https://doi.org/10.1016/S0924-0136(03)00785-4
  10. M. J. Shin, S. Y. Beak, E. S. Lee, A study for improving surface roughness of nitinol shape memory alloy in micro-electropolishing by taguchi method, J. Korean Soc. Precis. Eng., 2007a (2007), 273.
  11. S. H. Kim, J. H. Cho, D. H. Lim, C. H. Park, Process optimization for life extension of electropolishing solution using half round bus bar, J. Korean Inst. Surf. Eng., 49 (2016) 447-453. https://doi.org/10.5695/JKISE.2016.49.5.447
  12. M. Datta, D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochim Acta, 45 (2000) 2535.
  13. E. L. Smith, A. P. Abbott, K. S Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev., 114 (2014) 11060.
  14. H. Parangusan, J. Bhadra, A. Thani, A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH, Emergent Mater., 4 (2021) 1.
  15. A. Farjami, H. Yousefnia, Z. S. Seyedraoufi, Y. Shajari, Investigation of inhibitive effects of 2-mercaptobenzimidazole (2-MBI) and polyethyleneimine (PEI) on pitting corrosion of austenitic stainless steel, J. Bio Tribocorros, 6 (2020) 1.
  16. D. R. Mosera, M. Preet, Singh, L. F. Kahn, K. E. Kurtis, Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions, Corros. Sci., 57, (2012) 241
  17. D. H. Shin, S. J. Kim, Corrosion characteristics of 316L stainless steel with chloride concentrations in cathode operating conditions of metallic bipolar plate for PEMFC, Corros. Sci. Tech., 20, (2021) 435.
  18. J. H. Lee, K. H. Jung, J. C. Park, S. J. Kim, Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method, J. Mar. Eng. Technol., 41, (2017) 230.
  19. F. A. Arash, M. Amir, A. Navid, Electrochemical behaviour of AISI 410 stainless steel at open circuit potential in acidic solutions, Anal. Bioanal. Electrochem., 3 (2014) 284.
  20. B. L. Mirjam, M. Crt, K. Tadeja, M. Bostijan, K. Janez, The effect of surface roughness on the corrosion properties of type AISI 304 stainless steel in diluted NaCl and urban rain solution, J. Mater. Eng. Perform., 23 (2014) 1695-1702. https://doi.org/10.1007/s11665-014-0940-9
  21. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, Pramod. R, Jishnu Dwivedi, L. Kavitha, R. Ramaseshan, Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel, Appl Surf Sci, 286 (2013) 83.
  22. Z. U. Rahman, K. M. Deen, L. Cano, W. Haider, The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel, Appl. Surf. Sci., 410 (2017) 432.
  23. W. Tian, N. Du, S. Li, S. Chen, Q. Wu, Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution, Corros. Sci., 85 (2014) 372-379. https://doi.org/10.1016/j.corsci.2014.04.033
  24. H. K. Hwang, S. J. Kim, Effect of seawater temperature on the cyclic potentiodynamic polarization characteristics and microscopic analysis on damage behavior of super austenitic stainless steel, Corros. Sci. Tech., 20 (2021) 412-425. https://doi.org/10.14773/CST.2021.20.6.412
  25. S. Esmailzadeha, M. Aliofkhazraeia, H. Sarlakb, Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A teview, Prot. Met. Phys. Chem. Surf., 54 (2018) 976.
  26. R. Walter, M. B. Kannan, Repetitive nucleation of corrosion pits on stainless steel and the effects of surface roughness, J. Electrochem. Soc., 148 (2001) B504-516. https://doi.org/10.1149/1.1416503
  27. D. H. Shin, S. J. Kim, Investigation on electrochemical characteristics of battery housing material for electric vehicles in solution simulating an acid rain environment with chloride concentrations, Corros. Sci. Tech., 21 (2022) 147-157.