DOI QR코드

DOI QR Code

Cardiovascular Regeneration via Stem Cells and Direct Reprogramming: A Review

  • Choon-Soo Lee (Biomedical Research Institute, Seoul National University Hospital) ;
  • Joonoh Kim (Biomedical Research Institute, Seoul National University Hospital) ;
  • Hyun-Jai Cho (Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital) ;
  • Hyo-Soo Kim (Biomedical Research Institute, Seoul National University Hospital)
  • Received : 2022.01.12
  • Accepted : 2022.02.22
  • Published : 2022.05.01

Abstract

Cardiovascular disease (CVD) is the leading causes of morbidity and death globally. In particular, a heart failure remains a major problem that contributes to global mortality. Considerable advancements have been made in conventional pharmacological therapies and coronary intervention surgery for cardiac disorder treatment. However, more than 15% of patients continuously progress to end-stage heart failure and eventually require heart transplantation. Over the past year, numerous numbers of protocols to generate cardiomyocytes (CMCs) from human pluripotent stem cells (hPSCs) have been developed and applied in clinical settings. Number of studies have described the therapeutic effects of hPSCs in animal models and revealed the underlying repair mechanisms of cardiac regeneration. In addition, biomedical engineering technologies have improved the therapeutic potential of hPSC-derived CMCs in vivo. Recently substantial progress has been made in driving the direct differentiation of somatic cells into mature CMCs, wherein an intermediate cellular reprogramming stage can be bypassed. This review provides information on the role of hPSCs in cardiac regeneration and discusses the practical applications of hPSC-derived CMCs; furthermore, it outlines the relevance of directly reprogrammed CMCs in regenerative medicine.

Keywords

Acknowledgement

This study was supported by grants from the Korea Health Technology Research and Development Project "Strategic Center of Cell and Bio Therapy" (grant number: HI17C2085) and "Korea Research-Driven Hospital" (grant number: HI14C1277) through the Korea Health Industry Development Institute, funded by the Ministry of Health and Welfare, Korea.

References

  1. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med 2012;366:54-63. https://doi.org/10.1056/NEJMra1112570
  2. Cohen DJ, Van Hout B, Serruys PW, et al. Quality of life after PCI with drug-eluting stents or coronary-artery bypass surgery. N Engl J Med 2011;364:1016-26. https://doi.org/10.1056/NEJMoa1001508
  3. Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 2021;143:e254-743.
  4. Takehara N. Cell therapy for cardiovascular regeneration. Ann Vasc Dis 2013;6:137-44. https://doi.org/10.3400/avd.ra.13.00019
  5. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 2012;126:551-68. https://doi.org/10.1161/CIRCULATIONAHA.111.086074
  6. Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 2012;307:1717-26. https://doi.org/10.1001/jama.2012.418
  7. Wollert KC, Meyer GP, Muller-Ehmsen J, et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J 2017;38:2936-43. https://doi.org/10.1093/eurheartj/ehx188
  8. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012;308:2369-79. https://doi.org/10.1001/jama.2012.25321
  9. Surder D, Manka R, Lo Cicero V, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation 2013;127:1968-79. https://doi.org/10.1161/CIRCULATIONAHA.112.001035
  10. Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy for cardiac disease. Lancet 2012;379:933-42. https://doi.org/10.1016/S0140-6736(12)60075-0
  11. Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intracoronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial. Eur Heart J 2016;37:256-63. https://doi.org/10.1093/eurheartj/ehv493
  12. Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ. Cell therapy for cardiac repair--lessons from clinical trials. Nat Rev Cardiol 2014;11:232-46. https://doi.org/10.1038/nrcardio.2014.9
  13. Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013;113:810-34. https://doi.org/10.1161/CIRCRESAHA.113.300219
  14. Murohara T. Therapeutic angiogenesis with somatic stem cell transplantation. Korean Circ J 2020;50:12-21. https://doi.org/10.4070/kcj.2019.0288
  15. Menasche P, Vanneaux V, Hagege A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 2015;36:2011-7. https://doi.org/10.1093/eurheartj/ehv189
  16. Karantalis V, DiFede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 2014;114:1302-10. https://doi.org/10.1161/CIRCRESAHA.114.303180
  17. Bui TVA, Hwang JW, Lee JH, Park HJ, Ban K. Challenges and limitations of strategies to promote therapeutic potential of human mesenchymal stem cells for cell-based cardiac repair. Korean Circ J 2021;51:97-113. https://doi.org/10.4070/kcj.2020.0518
  18. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-86. https://doi.org/10.1016/j.jacc.2009.06.055
  19. Schwarz TM, Leicht SF, Radic T, et al. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler Thromb Vasc Biol 2012;32:e13-21. https://doi.org/10.1161/ATVBAHA.111.239822
  20. Ebert AD, Liang P, Wu JC. Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 2012;60:408-16. https://doi.org/10.1097/FJC.0b013e318247f642
  21. Matsa E, Rajamohan D, Dick E, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J 2011;32:952-62. https://doi.org/10.1093/eurheartj/ehr073
  22. Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010;363:1397-409. https://doi.org/10.1056/NEJMoa0908679
  23. Carvajal-Vergara X, Sevilla A, D'Souza SL, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 2010;465:808-12. https://doi.org/10.1038/nature09005
  24. Inoue H, Yamanaka S. The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 2011;89:655-61. https://doi.org/10.1038/clpt.2011.38
  25. Yazawa M, Hsueh B, Jia X, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011;471:230-4. https://doi.org/10.1038/nature09855
  26. Bardelli S, Moccetti M. Remodeling the human adult stem cell niche for regenerative medicine applications. Stem Cells Int 2017;2017:6406025.
  27. Bianco P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 2011;117:5281-8. https://doi.org/10.1182/blood-2011-01-315069
  28. Laflamme MA, Murry CE. Heart regeneration. Nature 2011;473:326-35. https://doi.org/10.1038/nature10147
  29. Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 2011;306:2110-9. https://doi.org/10.1001/jama.2011.1670
  30. Jin HJ, Bae YK, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013;14:17986-8001. https://doi.org/10.3390/ijms140917986
  31. Daley GQ. The promise and perils of stem cell therapeutics. Cell Stem Cell 2012;10:740-9. https://doi.org/10.1016/j.stem.2012.05.010
  32. Pannerec A, Marazzi G, Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 2012;18:599-606. https://doi.org/10.1016/j.molmed.2012.07.004
  33. Abdelwahid E, Siminiak T, Guarita-Souza LC, et al. Stem cell therapy in heart diseases: a review of selected new perspectives, practical considerations and clinical applications. Curr Cardiol Rev 2011;7:201-12. https://doi.org/10.2174/157340311798220502
  34. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751-6. https://doi.org/10.1016/S0140-6736(04)15689-4
  35. Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood 2009;113:5476-9. https://doi.org/10.1182/blood-2009-02-204800
  36. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 2004;110:349-55. https://doi.org/10.1161/01.CIR.0000135466.16823.D0
  37. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie 2005;87:125-8. https://doi.org/10.1016/j.biochi.2004.11.007
  38. Zheng C, Yang S, Guo Z, et al. Human multipotent mesenchymal stromal cells from fetal lung expressing pluripotent markers and differentiating into cell types of three germ layers. Cell Transplant 2009;18:1093-109. https://doi.org/10.3727/096368909X12483162197042
  39. Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013;12:689-98. https://doi.org/10.1016/j.stem.2013.05.008
  40. Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010;120:51-9. https://doi.org/10.1172/JCI40553
  41. Mignone JL, Kreutziger KL, Paige SL, Murry CE. Cardiogenesis from human embryonic stem cells. Circ J 2010;74:2517-26. https://doi.org/10.1253/circj.CJ-10-0958
  42. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011;9:29.
  43. Tao H, Chen X, Wei A, et al. Comparison of teratoma formation between embryonic stem cells and parthenogenetic embryonic stem cells by molecular imaging. Stem Cells Int 2018;2018:7906531.
  44. Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958;182:64-5. https://doi.org/10.1038/182064a0
  45. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
  46. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. https://doi.org/10.1016/j.cell.2007.11.019
  47. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  48. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797-801. https://doi.org/10.1126/science.1172482
  49. Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011;8:409-12. https://doi.org/10.1038/nmeth.1591
  50. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-9. https://doi.org/10.1126/science.1162494
  51. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad, Ser B, Phys Biol Sci 2009;85:348-62. https://doi.org/10.2183/pjab.85.348
  52. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7:618-30. https://doi.org/10.1016/j.stem.2010.08.012
  53. Cho HJ, Lee CS, Kwon YW, et al. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 2010;116:386-95. https://doi.org/10.1182/blood-2010-02-269589
  54. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 2007;21:1345-57. https://doi.org/10.1096/fj.06-6769com
  55. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 2012;111:344-58. https://doi.org/10.1161/CIRCRESAHA.110.227512
  56. Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008;453:524-8. https://doi.org/10.1038/nature06894
  57. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015-24. https://doi.org/10.1038/nbt1327
  58. Mummery C, Ward D, van den Brink CE, et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J Anat 2002;200:233-42. https://doi.org/10.1046/j.1469-7580.2002.00031.x
  59. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003;107:2733-40. https://doi.org/10.1161/01.CIR.0000068356.38592.68
  60. Passier R, Oostwaard DW, Snapper J, et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 2005;23:772-80. https://doi.org/10.1634/stemcells.2004-0184
  61. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 2008;135:2969-79. https://doi.org/10.1242/dev.021121
  62. Ren Y, Lee MY, Schliffke S, et al. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol 2011;51:280-7. https://doi.org/10.1016/j.yjmcc.2011.04.012
  63. Kempf H, Olmer R, Kropp C, et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 2014;3:1132-46. https://doi.org/10.1016/j.stemcr.2014.09.017
  64. Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 2005;23:607-11. https://doi.org/10.1038/nbt1093
  65. Fonoudi H, Ansari H, Abbasalizadeh S, et al. A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 2015;4:1482-94. https://doi.org/10.5966/sctm.2014-0275
  66. Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016;96:18-30. https://doi.org/10.1016/j.addr.2015.11.016
  67. Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac progenitor cells from stem cells: learning from genetics and biomaterials. Cells 2019;8:1536.
  68. Kattman SJ, Witty AD, Gagliardi M, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011;8:228-40. https://doi.org/10.1016/j.stem.2010.12.008
  69. Dubois NC, Craft AM, Sharma P, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 2011;29:1011-8. https://doi.org/10.1038/nbt.2005
  70. Birket MJ, Ribeiro MC, Verkerk AO, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 2015;33:970-9. https://doi.org/10.1038/nbt.3271
  71. Lee CS, Cho HJ, Lee JW, et al. Identification of latrophilin-2 as a novel cell-surface marker for the cardiomyogenic lineage and its functional significance in heart development. Circulation 2019;139:2910-2. https://doi.org/10.1161/CIRCULATIONAHA.119.040826
  72. Lee CS, Cho HJ, Lee JW, Son H, Chai J, Kim HS. Adhesion GPCR latrophilin-2 specifies cardiac lineage commitment through CDK5, Src, and P38MAPK. Stem Cell Reports 2021;16:868-82. https://doi.org/10.1016/j.stemcr.2021.03.003
  73. Lee JW, Lee CS, Ryu YR, et al. Lysophosphatidic acid receptor 4 is transiently expressed during cardiac differentiation and critical for repair of the damaged heart. Mol Ther 2021;29:1151-63. https://doi.org/10.1016/j.ymthe.2020.11.004
  74. DeLaughter DM, Bick AG, Wakimoto H, et al. Single-cell resolution of temporal gene expression during heart development. Dev Cell 2016;39:480-90. https://doi.org/10.1016/j.devcel.2016.10.001
  75. Uosaki H, Taguchi YH. Comparative gene expression analysis of mouse and human cardiac maturation. Genomics Proteomics Bioinformatics 2016;14:207-15. https://doi.org/10.1016/j.gpb.2016.04.004
  76. Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 2017;113:1708-18. https://doi.org/10.1093/cvr/cvx183
  77. Yin Z, Ren J, Guo W. Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta 2015;1852:47-52. https://doi.org/10.1016/j.bbadis.2014.11.003
  78. Denning C, Borgdorff V, Crutchley J, et al. Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta 2016;1863:1728-48. https://doi.org/10.1016/j.bbamcr.2015.10.014
  79. Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 2015;117:80-8. https://doi.org/10.1161/CIRCRESAHA.117.305365
  80. van den Berg CW, Okawa S, Chuva de Sousa Lopes SM, et al. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 2015;142:3231-8. https://doi.org/10.1242/dev.123810
  81. Bedada FB, Chan SS, Metzger SK, et al. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Reports 2014;3:594-605. https://doi.org/10.1016/j.stemcr.2014.07.012
  82. Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Semin Cell Dev Biol 2016;52:84-92. https://doi.org/10.1016/j.semcdb.2016.02.004
  83. Tiburcy M, Hudson JE, Balfanz P, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 2017;135:1832-47. https://doi.org/10.1161/CIRCULATIONAHA.116.024145
  84. Cardoso-Moreira M, Halbert J, Valloton D, et al. Gene expression across mammalian organ development. Nature 2019;571:505-9. https://doi.org/10.1038/s41586-019-1338-5
  85. Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010;142:375-86. https://doi.org/10.1016/j.cell.2010.07.002
  86. Inagawa K, Miyamoto K, Yamakawa H, et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res 2012;111:1147-56. https://doi.org/10.1161/CIRCRESAHA.112.271148
  87. Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012;485:593-8. https://doi.org/10.1038/nature11044
  88. Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012;485:599-604. https://doi.org/10.1038/nature11139
  89. Jayawardena TM, Egemnazarov B, Finch EA, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012;110:1465-73. https://doi.org/10.1161/CIRCRESAHA.112.269035
  90. Addis RC, Ifkovits JL, Pinto F, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol 2013;60:97-106. https://doi.org/10.1016/j.yjmcc.2013.04.004
  91. Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based approaches for cardiac regeneration. Korean Circ J 2021;51:943-60. https://doi.org/10.4070/kcj.2021.0291
  92. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126:677-89. https://doi.org/10.1016/j.cell.2006.06.044
  93. Li Y, Dal-Pra S, Mirotsou M, et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci Rep 2016;6:38815.