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AUTHOR'S SUMMARY

Despite recent advancements in treatment strategies, cardiovascular disease such as heart 
failure remains a significant source of global mortality. Stem cell technology and cellular 
reprogramming are rapidly growing fields that will continue to prove useful in cardiac 
regenerative therapeutics. This review provides information on the role of human pluripotent 
stem cells (hPSCs) in cardiac regeneration and discusses the practical applications of hPSC-
derived cardiomyocytes (CMCs). Moreover, we discuss the practical applications of hPSC-
derived CMCs while outlining the relevance of directly-reprogrammed CMCs in regenerative 
medicine. This review critically summarizes the most recent advances in the field will help to 
guide future research in this developing area.

ABSTRACT

Cardiovascular disease (CVD) is the leading causes of morbidity and death globally. In particular, 
a heart failure remains a major problem that contributes to global mortality. Considerable 
advancements have been made in conventional pharmacological therapies and coronary 
intervention surgery for cardiac disorder treatment. However, more than 15% of patients 
continuously progress to end-stage heart failure and eventually require heart transplantation. 
Over the past year, numerous numbers of protocols to generate cardiomyocytes (CMCs) from 
human pluripotent stem cells (hPSCs) have been developed and applied in clinical settings. 
Number of studies have described the therapeutic effects of hPSCs in animal models and 
revealed the underlying repair mechanisms of cardiac regeneration. In addition, biomedical 
engineering technologies have improved the therapeutic potential of hPSC-derived CMCs in 
vivo. Recently substantial progress has been made in driving the direct differentiation of somatic 
cells into mature CMCs, wherein an intermediate cellular reprogramming stage can be bypassed. 
This review provides information on the role of hPSCs in cardiac regeneration and discusses the 
practical applications of hPSC-derived CMCs; furthermore, it outlines the relevance of directly 
reprogrammed CMCs in regenerative medicine.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide; it includes various 
disorders such as stroke, cardiac muscle diseases, and vascular system diseases and affects 
blood supply to pivotal organs, including the heart and brain.1) Currently, the most effective 
treatment methods for patients utilize various technologies and devices to assist the ventricular 
system; these include catheter interventions and implantable cardio-defibrillators with 
resynchronization cardiac systems.2)3) Although these technologies were developed to treat CVD 
particularly, they have shown only moderate efficacy in reducing the rate of mortality from CVD 
events. Since the 1990s, many clinicians and researchers have worked to develop the concept of 
“cell therapy,” the main objective of which is to restore the functions of dying organs through 
a mechanism known as cardiovascular regeneration. This new and innovative therapy was first 
reported using patient-derived autologous bone marrow cells. There have been many reports 
on the improvement of therapeutic efficacy using cell therapy, including different cell sources, 
genes, materials, reagents, chemicals, and transplantation methods.4)

Although many studies have used bone marrow-derived cells,5-14) cardiac progenitor cells 
(CPCs),15) and mesenchymal stem cells,16)17) these candidates have shown disappointing 
clinical results in terms of regenerative ability, feasibility, and patient safety.18) These cell 
types are difficult to use in cell therapy owing to the impairment of self-revascularization 
potential by the surrounding ischemic environment, and due to the loss of transplanted 
cells.19) Therefore, it is necessary to enhance the regeneration process via direct cell 
transplantation or through the administration of growth factors and cytokines. Recently, 
to overcome this drawback, pluripotent stem cells (PSCs) such as embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs) are emerging as beneficial cell sources 
for cardiac regeneration. These cells have unique and genuine characteristics; they can 
differentiate into several cardiac lineage cells, including cardiomyocytes (CMCs).20) Based 
on the unprecedented notion that somatic cells can be reprogrammed using defined factors, 
numerous studies have reported the ability of these iPSCs to differentiate into functional 
and mature cardiac lineage cells. This review describes the different types of PSC-derived 
CMC and outlines key markers that can be used to identify PSC-derived cardiac lineage cells. 
Furthermore, this paper will review recent findings on the direct conversion of adult somatic 
cells into cardiac lineage cells while highlighting their therapeutic potential in regenerative 
medicine and future treatment of CVDs.

PLURIPOTENT STEM CELLS-DERIVED CARDIOMYOCYTES

Stem cells are classified based on their ability to differentiate into mature cells. Notably, 
cardiac lineage cells, such as CMCs derived from iPSCs, can be obtained easily from 
individual patient and can be used to generate disease-specific models. These patient-derived 
disease models can be used to understand the genetic and molecular mechanisms underlying 
hereditary CVD phenotypes; they can also reveal novel therapeutic targets for personalized 
medicine.21-25)

Somatic stem cells (SSCs) are non-ESCs that are found in postnatal development; they reside 
in a location known as the “stem cell niche”.26)27) SSCs are present in various tissues, such as 
the bone marrow, skeletal muscles, cord blood, peripheral blood, adipose tissue, lungs, and 
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heart.28-39) However, they have limited multipotent capacity, and their main roles are to maintain 
the homeostasis of fully differentiated cells and regenerate damaged tissues. The limited ability 
to differentiate into desired target lineages and the difficulty of obtaining pure stem cells 
showed that new methods need to be developed to facilitate therapeutic application.

ESCs are classified as PSCs derived from the inner cell mass of blastocysts (Table 1). ESCs 
can be cultured in a stringently controlled environment, which means that they can divide 
and proliferate without undergoing differentiation. Therefore, these ex vivo cultured cells 
serve as an excellent candidate for cell therapies for various chronic diseases, including 
metabolic syndrome, brain disorders, and cardiomyopathies. However, due to serious ethical 
issues and technical problems, the use of ESCs in clinical settings is highly restricted.40) 
ESC-derived differentiated target cells are used for cell transplantation. However, this can 
induce teratoma formation in target tissues due to presence of undifferentiated cells among 
transplanted cell populations. This has raised safety concerns regarding the use of these cells 
for transplantation.41-43) As for ethical concerns, the use of human ESCs is debatable with many 
advocates anxious of using a live embryo samples for isolation of human ESCs. Taken together, 
these challenges have hindered the use of human ESCs and live human embryos in laboratories.

For their practical applicability in a clinical environment, large-scale production of cells, with 
tightly regulated protocols and culture environments, is required. Therefore, researchers 
in stem cell field have focused on exploring other options for industrial and clinical 
applications, such as converting adult somatic cells into PSCs. This process of requisite 
pluripotency, which is called “cell reprogramming,” represents a paradigm transition from 
a traditional method of cell therapy and in the current understanding of cellular biology and 
the plasticity of the mature and differentiated states of somatic cells.

Sir John Gurdon first successfully reprogrammed cells by cloning a frog using somatic cell 
nuclear transfer; he was subsequently awarded the Nobel Prize in Medicine in 2012.44) Since 
then, this discovery has led stem cell researchers to develop the concept of reprogramming 
by inducing pluripotency in somatic cells (Table 1). In 2006, Dr. Shinya Yamanaka (Nobel 
Prize in Medicine, 2012) and his colleagues generated the first iPSCs by inserting the defined 
transcription factors (OCT4, SOX2, KLF4, and c-MYC [OSKM]), which are known pluripotency-
maintenance genes, into the nuclei of somatic cells using retrovirus.45)46) These human 
iPSCs (hiPSCs) are almost equivalent to human ESCs in terms of their self-renewal capacity 
and potential to differentiate into multiple lineages. This discovery, combined with the 
development of cellular reprogramming strategies, has made it possible to use patient-specific 
iPSCs for cell therapy while overcoming ethical issues and concerns regarding immune 
rejection. In the early studies on reprogramming of somatic cells, genome-integrating viruses 
were used, which limited their clinical applicability due to random insert mutations and 
tumor formation. However, this technology has now advanced to the stage where iPSCs can 
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Table 1. Overview of PSCs
Cell type Advantages Disadvantages Reference
ESCs • Pluripotency and self-renewal

•  High differentiation potential into most cell types

• Applicable for developmental process studies

• Ethical concerns

• Formation of teratoma

•  Difficulty of establishing human ES cell lines

40)41)43)54)

iPSCs •  Pluripotency, culturable in laboratory, expandable

• Can be obtained easily in vitro

•  Establishment of autologous-or patient-specific cell lines

• Use of genome-integrating viruses

• Safety issues in regenerative medicine

45)46)

CMC = cardiomyocyte; ESC = embryonic stem cell; iPSC = induced pluripotent stem cell; PSC = pluripotent stem cell.



be generated using non-genetic methods, including plasmid vectors, adenoviruses, Sendai 
viruses, proteins, and modified ribonucleic acids (RNAs).47-54) It is thus necessary to establish a 
well-settled differentiation protocol to handle iPSCs with favorable properties.

Despite the development of promising surgical interventions and pharmacological 
treatments for CVDs, heart transplantation remains the last therapeutic option for patients 
with end-stage heart failure. Therefore, approaches that could refurbish the failing 
population of CMCs to rescue damaged myocardium could be used to recover heart function. 
The CMCs derived from hiPSCs represent promising therapeutic sources for CVDs. Since 
ESCs and iPSCs are similar in characteristics and differentiation potential, the current study 
to differentiate hiPSCs into CMCs are in parallel with previously established protocols for 
deriving CMCs from human ESCs.

IN VITRO DIFFERENTIATION OF PLURIPOTENT STEM 
CELLS INTO CARDIOMYOCYTES
For their clinical application, the PSC-derived CMCs need to be highly pure and enriched, 
largely scalable for mass production, and cultured in a xenogeneic-free environment. 
There are traditional small-scale protocols for CMC differentiation, including formation of 
embryoid body (EB); the co-culture of endodermal cell lines (END-2) with undifferentiated 
PSCs; and the treatment of defined cardiogenic growth factors to confluent PSC monolayer.55) 
In general, EB-based formation assays are the most used methods to generate CMCs from 
iPSCs in laboratories. This type of assay involves undifferentiated iPSCs as aggregates in 
a suspended culture, which causes them to form EB structures. These EBs are cultured 
in condition which serum is absent to provide pluripotency. In the presence of several 
cytokines including activin A and bone morphogenetic protein 4 (BMP4), EBs differentiate 
into mature CMCs.55-57) The co-culture of visceral endoderm-like cells with PSCs induces 
CMC differentiation; the visceral endoderm is an extraembryonic tissue that is formed 
prior to gastrulation during embryogenesis, which pivotal factors that are involved in 
development are secreted. Mummery et al. reported that CMC differentiation can be induced 
by co-culturing visceral endoderm-like cells with human and mouse PSCs.58-60) Lastly, 
the subsequent addition of growth factors to PSCs has been shown to induce direct CMC 
differentiation by recapitulating the cardiac development during embryogenesis in vitro. 
Stimulating human PSCs (hPSCs) with supplementing growth factors like basic fibroblast 
growth factor, Wnt3, BMP4 and activin A, followed by DKK1 or other Wnt inhibitors, has 
been shown to induce cardiac differentiation.56)57)61) Subsequently, the addition of other 
regulators, such as vascular endothelial growth factor,56) CHIR and IWR-1,62)63) Noggin,64) 
transforming growth factor-β signaling inhibitor, or sonic hedgehog signaling activation,65) 
has also been found to increase the differentiation efficiency of CMCs.

These traditional protocols are used for small-scale production and are mainly applicable 
for research. Although these protocols can achieve high percentage yields of purified CMCs 
production, they have limited reproducibility and scalability, and the resulting CMCs are 
mostly heterogeneous. In addition, billions of CMCs are required for high-throughput assays, 
tissue engineering, and animal models. Although large-scale production can be achieved by 
scaling up culture conditions, this process is space- and/or cost-inefficient.
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The large-scale production of PSC-derived CMCs has been achieved using three-dimensional 
(3D) platforms that are compatible with industry. These include cultures that rely on matrix, a 
polymer with sphere cultures and cultures do not depend on matrix platforms, like bioreactors 
and spinning flasks. Several studies demonstrated successfully generated high yields of 
functional CMCs from hPSCs on a large scale, using bioreactors and chemical modulators.66)

Taken together, many modulators and factors, including cell populations, mediators that 
induce cardiac lineage differentiation, and culturing conditions, are pivotal in mediating 
the differentiation of iPSCs into CMCs. Optimizing these factors is important for achieving 
highly efficient and successful differentiation of PSCs into CMCs.

MARKERS FOR CARDIAC LINEAGE CELLS

The CMCs that are differentiated from PSCs comprise heterogeneous CPC populations and 
partially differentiated CMCs. Hence, differentiated CMCs must be purified and enriched. In 
order to achieve this, it is necessary to determine the origins of cardiac cell types and identify 
the markers of cardiac lineage cells to understand the origin of heart malformations during 
development. Furthermore, it is necessary to produce a cell-therapy-applicable cardiac tissue 
for use in regenerative medicine. In this section, several key markers for cardiac lineage cells 
during the differentiation of PSCs into CMCs are discussed (Table 2).

The functions of the heart depend on interactions between different cardiac cell types. These 
cells are stringently controlled by precise spatiotemporal regulation during the development 
of the heart structure. Recent technologies, such as single-cell transcriptomics, have begun 
to reveal the identity of cell heterogeneity through early developmental stages. Furthermore, 
the same strategy can be applied to trace lineages during undifferentiated and fully 
differentiated stages, using hPSCs. Hence, identifying the markers involved in human CMCs 
is a popular research topic, on which studies are ongoing.
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Table 2. Markers for generation of PSC-derived cardiac lineage cells
Markers Features Reference
Surface marker

KDR (Flk-1) and PDGFR-α •  Easy to isolate owing to surface expression, but requires two-color FACS  

68) • Used to identify PSC-derived cardiac mesoderm
• Only appear transiently during development

SIRPα • Easy to isolate owing to surface expression  

69) • Characteristics of mature CMCs
•  Only expressed in human cells; no functional significance in mouse cardiac cells

PDPN • Expressed in both primitive CPCs and SAN-like progenitors  

70) • Used for expansion of hPSC-derived cardiac cells
• Low similarity between mouse and human PDPN sequences

LPHN2, LPAR4 • G protein-coupled receptor family  

71-73) • Easy to isolate, require only one surface marker
• Functional marker in mouse and human cardiac lineage cells

Maturation marker
MYH6/7, • Characteristics of mature CMCs  

76) Troponin I/T, • Important in cardiac function
TTN • Difficulty of sorting due to intracellular expression

CMCs = cardiomyocytes; CPC = cardiac progenitor cell; FACS = fluorescence activated cell sorting; Flk-1 = fetal liver kinase 1; KDR = kinase insert domain receptor; 
LPAR4 = lysophosphatidic acid receptor 4; LPHN2 = latrophilin-2; MYH = myosin heavy chain; PDGFR-α = platelet-derived growth factor receptor alpha; PDPN = 
podoplanin; PSC = pluripotent stem cell; SAN = sinoatrial node; SIRPα = signal regulatory protein alpha; TTN = titin.



Although CPCs have been identified using multiple markers, the development of efficient 
methods to obtain and expand iPSC-derived CPCs in vitro remains challenging.67) As most 
of these markers are intracellular molecules or transcription factors, it is necessary to find 
a different marker that can be used to purify CMCs. Kattman et al.68) revealed that kinase 
insert domain receptor (KDR; Flk-1) and platelet-derived growth factor (PDGFR)-α are 
co-expressed in emerging cardiac mesoderm. However, these markers are only expressed 
for a short period during development, and practical two-color flow cytometric isolation is 
needed for enrichment. In addition, many studies have utilized signal-regulatory protein 
alpha (SIRPα),69) and podoplanin (PDPN)70) as cell surface markers to purify and expand CPC 
populations derived from hPSCs. However, murine cardiac cells do not express SIRPα; hence, 
it is difficult to perform studies of functional significance, such as studies using a knockout 
or overexpression model, via this approach.

Recently, the surface protein G protein-coupled receptor, latrophilin-2 (LPHN2),71)72) and 
lysophosphatidic acid receptor 4 (LPAR4)73) were reported as novel CPC markers. LPHN2 
is a functional marker for isolating CPCs and CMCs derived from PSC. In addition, it has 
been demonstrated that Lphn2-deficient ESCs and iPSCs do not achieve complete cardiac 
differentiation. In contrast, LPAR4 expression was observed to be transient during in vitro 
cardiac differentiation from the undifferentiated state of ES/iPS cells. Based on the transient 
expression of LPAR4 during differentiation, an optimal protocol has been established for the 
sequential stimulation and inhibition of LPAR4 signaling.

The expression pattern of maturation-marker genes identified in mice is similar to that 
in humans.74)75) The transitions of sarcomeric gene isoform occurs from the fetal to adult 
stages during development. The most well-known marker is the cardiac myosin heavy chain 
(MHC - also known as MYH). There are two isoforms: α-MHC (also known as MYH6) and 
β-isoform (β-MHC - also known as MYH7). The β-isoform is the most predominant one in 
adult CMCs, but this switches in mouse hearts. Troponins consist of fast- (the TNNC2, TNNI2, 
and TNNT3 genes) and slow-twitch skeletal (the TNNC1, TNNI1, and TNNT1 genes) and cardiac 
myocytes (the TNNI3 and TNNT2 genes). The heart selectively produces Troponins, TnnI, 
and TnnT, but TnnC is also produced in the slow-twitch skeletal muscle. Regions of different 
amino acid sequences (cTnnI and cTnnT) can be used to distinguish these markers from 
each other. TNNT2 messenger RNA transcribes multiple alternatively spliced transcripts, 
thereby synthesizing different proteins (cTnnT1-cTnnT4). Among them, cTnnT3 is the 
dominant isoform in the normal adult heart.76) TroponinI has evolved into three isoforms 
that are encoded by TNNI1 (slow skeletal, ssTnI), TNNI2 (fast skeletal, fsTnI), and TNNI3 
(cardiac, cTnI). In adult CMCs, cTnI is the major isoform that is expressed, although in 
hiPSC-derived CMCs, ssTnI is the primary isoform. Titin (TTN) also has three isoforms: N2B, 
N2BA, and fetal cardiac titin (FCT). In hiPSC-derived CMCs, N2BA is predominant, whereas 
N2B is mainly expressed in adult CMCs.77)78) Interestingly, hiPSC-derived CMCs show lower 
expression levels of several cardiac-related genes, including sarcoplasmic reticulum ATPase 
(SERCA2), caveolin 3 (CAV3), and potassium voltage-gated channel (KCNH2), among others.78-80)

Measuring the ratio of TNNI3 to TNN1 is one option for verifying the maturation status 
of hiPSC-derived CMCs.81) A transcriptome-based approach could represent another 
promising option for more precisely evaluating their mature state. Single-cell transcriptomic 
analysis can also verify the developmental stages of CMCs during hPSC differentiation. 
However, these approaches are mostly restricted to mouse PSC-derived CMCs, as limited 
transcriptomic data are available for fully developed human hearts.80)82-84)
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DIRECT CARDIAC REPROGRAMMING

The direct reprogramming of fully mature and terminally differentiated somatic cells into 
another lineage, using a combination of defined factors, has changed the traditional and 
fundamental concepts of previously established basic knowledge regarding differentiated 
cells. In recent years, many studies have reported the direct conversion of somatic cells into 
various cell types. The generation of desired functional cell types that can be transplanted 
into patients is a promising approach for biomedical applications and clinical fields.

Ieda and colleagues85) used mouse fibroblasts that were engineered to express green fluorescent 
protein during cardiac reprogramming (Table 3). After screening process, previously reported 
14 candidate factors were carefully narrowed down to 3 transcription factors, Gata4, Mef2c, 
and Tbx5. Subsequently, two study groups have reported that the delivery of a combination 
of Gata4, Mef2c, and Tbx5 using retrovirus can convert fibroblasts in vivo, residing at sites of 
infarction, into CMCs. Furthermore, this approach reduces the extent of injury.86)87) Another 
study reported that adding the transcription factor Hand2 improves the efficiency of the direct 
conversion of fibroblasts into CMCs, both in vitro and in vivo.88) Subsequently, Jayawardena et 
al. demonstrated that microRNAs (miRNAs), in combination with miR-1, miR-133, miR-208, 
miR-499, and Janus kinase (JAK) inhibitors, could convert adult fibroblasts into CMCs both 
in vitro and in vivo.89) Another group evaluated the functions of CMCs directly converted from 
fibroblasts, by quantifying robust calcium oscillation, the expression of CMC markers, and 
spontaneous beating. This study reported that the combination of Hand2, Nkx2-5, Gata4, Mef2c, 
and Tbx5 represents the most potent arrangement of cardiac lineage-inducing factors.90)

Mechanobiology is known to play a role in cardiac embryology, diseases, and regeneration,91) 
but its function in cardiac reprogramming remains unclear. The key factor that determines the 
success or failure of reprogramming is the extracellular environment. The microenvironment 
of a mesenchymal stem cell culture can affect its differentiation capacity.92) CMCs derived from 
hiPSCs exhibit enhanced maturation upon stimulation of their external stretch by a physical 
stimulant. Transduced fibroblasts seeded on a substrate with microgrooves have also been 
reported to show improved reprogramming efficiency in CMCs. Another study demonstrated 
that cells cultured in a 3D hydrogel show improved efficiency of miRNA-mediated direct 
reprogramming of cells into CMCs, compared to the cells cultured in a conventional 2D 
culture.93) Although research on direct cardiac reprogramming is continuously evolving, more 
efforts are still required before this technique can be used in clinical applications. For example, 
development of safe viral vectors that is applicable in humans is required, and improved efficacy 
is needed to induce direct cardiac reprogramming from patient-derived adult somatic cells.
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Table 3. Strategy of direct reprogramming for cardiac regeneration
Strategy used Mechanisms Reference
Delivery of Gata4, Mef2, and Tbx5 (GMT) • Plays a key role in early heart development 85)

• Exhibit embryonic lethality when mutated
Addition of transcription factors Hand2 and Nkx2-5 with 
GMT

• Mesodermal and neural crest-derived structures of the developing heart 88)90)

• Interact with non-coding regions of many genes involved in cardiogenesis
• Inhibits cell cycle-inducing genes and enhances cardiac reprogramming

Combination of microRNA and JAK inhibitor • Enhances cardiac reprogramming efficiency 89)

• Plays a key role in cardiac muscle development and differentiation
• Inhibition of fibroblast signatures

Mechanobiology • Favorable extracellular environment for reprogramming, e.g., stretch stimulation 92)

• Induces changes in the chromatin status and affects cardiac lineage gene expression
JAK = Janus kinase.



CONCLUSION

Stem cell technology and cellular reprogramming are rapidly growing fields that will continue 
to prove useful in cardiac regenerative therapeutics. The lessons learned from previous 
studies on traditional PSCs have facilitated the application of hiPSCs in CVD modeling 
and clinical cell transplantation. The subsequent development of technology to induce the 
direct differentiation of adult somatic cells into CMCs using defined factors has allowed 
for ethical problems and the low potential of teratoma formation to be circumnavigated. 
This represents the overcoming of a major hurdle to the use of iPSCs as primary cells in cell 
transplantation. The remaining challenges for the use of PSCs and direct reprogramming in 
clinical applications are as follows: (1) the efficiency of reprogramming must be improved for 
clinical applications; (2) the safety of direct reprogramming must be demonstrated in large 
animals, such as pigs and others, before it can be applied to humans; and (3) the molecular 
mechanisms underlying these cellular events must be deciphered precisely and investigated 
in more detail. Currently, direct cardiac remodeling events have been mainly studied in 
myocardial infarction models. Their efficacy should be tested in other CVD models, including 
dilated cardiomyopathy and other myocardial diseases.
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