DOI QR코드

DOI QR Code

Density Functional Theory Study of Li Storage and Pathways at Graphene Edges

밀도범함수이론을 이용한 그래핀 나노 구조 가장자리에서의 리튬 이온 저장 및 이동경로 연구

  • Lee, Ji Hee (School of Chemical Engineering, Pusan National University) ;
  • Kwon, Sung Hyun (School of Chemical Engineering, Pusan National University) ;
  • Pham, Nguyet N.T. (School of Chemical Engineering, Pusan National University) ;
  • Kang, Haisu (Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign) ;
  • Lee, Ji Hye (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Seung Geol (School of Chemical Engineering, Pusan National University)
  • 이지희 (부산대학교 응용화학공학부) ;
  • 권성현 (부산대학교 응용화학공학부) ;
  • 팜 티 누 구옛 (부산대학교 응용화학공학부) ;
  • 강혜수 (일리노이대학교 화공생명공학과) ;
  • 이지혜 (부산대학교 유기소재시스템공학과) ;
  • 이승걸 (부산대학교 응용화학공학부)
  • Received : 2022.07.18
  • Accepted : 2022.08.24
  • Published : 2022.08.31

Abstract

Graphene is widely used as an active material in various energy storage devices owing to its high mechanical strength, thermal transfer characteristics, electron transport property, electric conductivity, and large specific surface area. In this study, the storage and pathway of Li considering two types of graphene edge nanostructures were investigated via density functional theory (DFT) calculations. Because the graphene edge is typically divided into an armchair edge and a zigzag edge, the armchair and zigzag graphene edge models are constructed at the atomic level to investigate the effects of the graphene edge on the binding energy, diffusion pathway, and charge transfer from Li to the graphene plane using DFT.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. K. A. Madurani, S. Suprapto, N. I. Machrita, S. L. Bahar, W. Illiya, and F. Kurniawan, "Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry", ECS J. Solid State Sci. Technol., 2020, 9, 093013. https://doi.org/10.1149/2162-8777/abbb6f
  2. A. Santhiran, P. Iyngaran, P. Abiman, and N. Kuganathan, "Graphene Synthesis and Its Recent Advances in Applications- A Review", C J. Carbon Res., 2021, 7, 76. https://doi.org/10.3390/c7040076
  3. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, "Mechanical Properties of Graphene and Graphene-based Nanocomposites", Prog. Mater. Sci., 2017, 90, 75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004
  4. E. B. Bahadir and M. K. Sezginturk, "Applications of Graphene in Electrochemical Sensing and Biosensing", Trac-Trend Anal. Chem., 2016, 76, 1-14. https://doi.org/10.1016/j.trac.2015.07.008
  5. S. Sarma, S. C. Ray, and A. M. Strydom, "Electronic and Magnetic Properties of Nitrogen Functionalized Grapheneoxide", Diamond Relat. Mater., 2017, 79, 1-6. https://doi.org/10.1016/j.diamond.2017.08.011
  6. Y. J. Zhong, Z. Zhen, and H. W. Zhu, "Graphene: Fundamental Research and Potential Applications", Flatchem, 2017, 4, 20-32. https://doi.org/10.1016/j.flatc.2017.06.008
  7. S. Schoche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, "Optical Properties of Graphene Oxide and Reduced Graphene Oxide Determined by Spectroscopic Ellipsometry", Appl. Surf. Sci., 2017, 421, 778-782. https://doi.org/10.1016/j.apsusc.2017.01.035
  8. J. Hass, W. A. de Heer, and E. H. Conrad, "The Growth and Morphology of Epitaxial Multilayer Graphene", J. Phys.: Condens. Matter, 2008, 20, 323202. https://doi.org/10.1088/0953-8984/20/32/323202
  9. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. Dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, "Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect", Phys. Rev. Lett., 2007, 99, 216802. https://doi.org/10.1103/PhysRevLett.99.216802
  10. Y. Q. Sun, Q. O. Wu, and G. Q. Shi, "Graphene Based New Energy Materials", Energy Environ. Sci., 2011, 4, 1113-1132. https://doi.org/10.1039/c0ee00683a
  11. E. O. Polat, O. Balci, and C. Kocabas, "Graphene Based Flexible Electrochromic Devices", Sci. Rep., 2014, 4, 6484. https://doi.org/10.1038/srep06484
  12. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 2006, 442, 282-286. https://doi.org/10.1038/nature04969
  13. L. Lu, "Recent Advances in Synthesis of Three-dimensional Porous Graphene and Its Applications in Construction of Electrochemical (bio)sensors for Small Biomolecules Detection", Biosens. Bioelectron., 2018, 110, 180-192. https://doi.org/10.1016/j.bios.2018.03.060
  14. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, "The Role of Graphene for Electrochemical Energy Storage", Nat. Mater., 2015, 14, 271-279. https://doi.org/10.1038/nmat4170
  15. J. R. Dahn, T. Zheng, Y. H. Liu, and J. S. Xue, "Mechanisms for Lithium Insertion in Carbonaceous Materials", Science, 1995, 270, 590-593. https://doi.org/10.1126/science.270.5236.590
  16. X. Y. Zhang, J. Xin, and F. Ding, "The Edges of Graphene", Nanoscale, 2013, 5, 2556-2569. https://doi.org/10.1039/c3nr34009k
  17. G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comp. Mater. Sci., 1996, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  18. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  19. N. N. T. Pham, K. H. Kim, B. Han, and S. G. Lee, "Theoretical Investigation of the Active Sites in N-Doped Graphene Bilayer for the Oxygen Reduction Reaction in Alkaline Media in PEMFCs", J. Phys. Chem. C, 2022, 126, 5863-5872. https://doi.org/10.1021/acs.jpcc.1c09657
  20. S. Kwon and S. G. Lee, "Density Functional Theory Study on Polybenzimidazole with Sulfonic Acid Functional Group for PEMFC Applications", Text. Sci. Eng., 2015, 52, 137-142. https://doi.org/10.12772/TSE.2015.52.137
  21. H. J. Seo, H. Kang, T. Lee, S. Chae, E. Kim, J. H. Lee, and S. G. Lee, "Correlation between Redox Active Sites and Sodium Storage Behavior in Dye/graphene Nanohybrids", Appl. Surf. Sci., 2022, 587, 152859. https://doi.org/10.1016/j.apsusc.2022.152859
  22. T. Lee, W. Kwon, H. S. Kang, S. Chae, E. Kim, J. Kim, H. G. Chae, A. S. Lee, E. Jeong, J. H. Lee, and S. G. Lee, "Pyropolymerization of Organic Pigments for Superior Lithium Storage", Carbon, 2022, 188, 187-196. https://doi.org/10.1016/j.carbon.2021.11.036
  23. J. H. Lee, S.-D. Yim, Y.-J. Sohn, and S. G. Lee, "Molecular Dynamics Simulations on Structural and Mass Transport Properties in the Catalyst Layer of PEMFCs", Text. Sci. Eng., 2022, 59, 146-154.
  24. S. Grimme, "Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction", J. Comput. Chem., 2006, 27, 1787-1799. https://doi.org/10.1002/jcc.20495
  25. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- Zone Integrations", Phys. Rev. B, 1976, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  26. G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths", J. Chem. Phys., 2000, 113, 9901-9904. https://doi.org/10.1063/1.1329672
  27. G. Henkelman, A. Arnaldsson, and H. Jonsson, "A Fast and Robust Algorithm for Bader Decomposition of Charge Density", Comp. Mater. Sci., 2006, 36, 354-360. https://doi.org/10.1016/j.commatsci.2005.04.010
  28. K. Momma and F. Izumi, "VESTA 3 for Three-dimensional Visualization of Crystal, Volumetric and Morphology Data", J. Appl. Crystallogr., 2011, 44, 1272-1276. https://doi.org/10.1107/S0021889811038970
  29. C. Uthaisar, V. Barone, and J. E. Peralta, "Lithium Adsorption on Zigzag Graphene Nanoribbons", J. Appl. Phys., 2009, 106, 113715. https://doi.org/10.1063/1.3265431
  30. S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, and T. Enoki, "Role of Edge Geometry and Chemistry in the Electronic Properties of Graphene Nanostructures", Faraday Discuss., 2014, 173, 173-199. https://doi.org/10.1039/C4FD00073K