Acknowledgement
이 논문은 한국생산기술연구원의 지원을 받아 수행된 연구임(과제번호 EH220005).
References
- Z. Rao, F. Ershad, A. Almasri, L. Gonzalez, X. Wu, and C. Yu, "Soft Electronics for the Skin: From Health Monitors to Human-Machine Interfaces", Adv. Mater. Technol., 2020, 5, 2000233. https://doi.org/10.1002/admt.202000233
- C. Choi, Y. Lee, K. W. Cho, J. H. Koo, and D. H. Kim, "Wearable and Implantable Soft Bioelectronics Using Two- Dimensional Materials", Acc. Chem. Res., 2019, 52, 73-81. https://doi.org/10.1021/acs.accounts.8b00491
- R. Panhwar, N. Soni, A. Sikandar, A. Raza, K. C. Sun, I. A. Sahito, and S. H. Jeong, "Binder-free Graphene Printed Flexible and Conductive Cotton Fabric for E-textile Applications", Text. Sci. Eng., 2021, 58, 113-117.
- C. Wei, H. Fei, Y. Tian, Y. An, G. Zeng, J. Feng, and Y. Qian, "Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next- Generation Lithium-Ion Batteries", Small, 2019, 15, 1903214. https://doi.org/10.1002/smll.201903214
- Y. Ding, X. Guo, Y. Qian, L. Zhang, L. Xue, J. B. Goodenough, and G. Yu, "A Liquid-Metal-Enabled Versatile Organic Alkali- Ion Battery", Adv. Mater., 2019, 31, 1806956. https://doi.org/10.1002/adma.201806956
- M. Ku, J. Kim, J. E. Won, W. Kang, Y. G. Park, J. Park, J. H. Lee, J. Cheon, H. H. Lee, and J. U. Park, "Smart, Soft Contact Lens for Wireless Immunosensing of Cortisol", Sci. Adv., 2020, 6, eabb2891. https://doi.org/10.1126/sciadv.abb2891
- T. Lim, M. Kim, A. Akbarian, J. Kim, P. A. Tresco, and H. Zhang, "Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronics Applications", Adv. Healthcare Mater., 2022, 11, 2102382. https://doi.org/10.1002/adhm.202102382
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y. Chai, and Z. Zheng, "Permeable Superelastic Liquid-metal Fibre Mat Enables Biocompatible and Monolithic Stretchable Electronics", Nat. Mater., 2021, 20, 859-868. https://doi.org/10.1038/s41563-020-00902-3
- J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in an Aqueous Environment", ACS Appl. Mater. Interfaces, 2018, 10, 17448-17454. https://doi.org/10.1021/acsami.8b02320
- R. Guo and J. Liu, "Implantable Liquid Metal-based Flexible Neural Microelectrode Array and Its Application in Recovering Animal Locomotion Functions", J. Micromech. Microeng., 2017, 27, 104002. https://doi.org/10.1088/1361-6439/aa891c
- M. D. Dickey, "Stretchable and Soft Electronics Using Liquid Metals", Adv. Mater., 2017, 29, 1606425. https://doi.org/10.1002/adma.201606425
- T. Lim, T. A. Ring, and H. Zhang, "Chemical Analysis of the Gallium Surface in a Physiologic Buffer", Langmuir, 2022, 38, 6817-6825. https://doi.org/10.1021/acs.langmuir.1c03281
- T. Daeneke, K. Khoshmansh, N. Mahmood, I. A. de Castro, D. Esrafilzadeh, S. J. Barrow, M. D. Dickey, and K. Kalantarzadeh, "Liquid Metals: Fundamentals and Applications in Chemistry", Chem. Soc. Rev., 2018, 47, 4073-4111. https://doi.org/10.1039/C7CS00043J
- D. Morales, N. A. Stoute, Z. Yu, D. E. Aspnes, and M. D. Dickey, "Liquid Gallium and the Eutectic Gallium Indium (EGaIn) Alloy: Dielectric Functions from 1.24 to 3.1 eV by Electrochemical Reduction of Surface Oxides", Appl. Phys. Lett., 2016, 109, 091905. https://doi.org/10.1063/1.4961910
- S. Holcomb, M. Brothers, A. Diebold, W. Thatcher, D. Mast, C. Tabor, and J. Heikenfeld, "Oxide-free Actuation of Gallium Liquid Metal Alloys Enabled by Novel Acidified Siloxane Oils", Langmuir, 2016, 32, 12656-12663. https://doi.org/10.1021/acs.langmuir.6b03501
- J. H. So, H. J. Koo, M. D. Dickey, and O. D. Velev, "Ionic Current Rectification in Soft-matter Diodes with Liquid-metal Electrodes", Adv. Funct. Mater., 2012, 22, 625-631. https://doi.org/10.1002/adfm.201101967
- X. Wang, X. Zhang, L. Sun, D. Lee, S. Lee, M. Wang, J. Zhao, Y. Shao-Horn, M. Dinca, T. Palacios, and K. K. Gleason, "High Electrical Conductivity and Carrier Mobility in oCVD PEDOT Thin Films by Engineered Crystallization and Acid Treatment", Sci. Adv., 2018, 4, eaat5780. https://doi.org/10.1126/sciadv.aat5780
- M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, and J. Simonato, "Progress in Understanding Structure and Transport Properties of PEDOT-based Materials: A Critical Review", Prog. Mater. Sci., 2020, 108, 100616. https://doi.org/10.1016/j.pmatsci.2019.100616
- S. H. Cho, T. S. Kang, and J. Y. Lee, "Elastic Textile Fabric Composite with High Electrical Conductivity as a Strain Sensor for Large Deformation", Text. Sci. Eng., 2007, 44, 86-89.
- T. Lim and K. W. Oh, "Electrical Property of Polypyrrole/ MWCNT-g-PSSA Composite", Text Sci. Eng., 2011, 48, 6-13.
- S. Hou, M. L. Kasner, S. Su, K. Patel, and R. Cuellari, "Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene", J. Phys. Chem. C, 2010, 114, 14915-14921. https://doi.org/10.1021/jp1020593
- B. J. Venton and Q. Cao, "Fundamentals of Fast-scan Cyclic Voltammetry for Dopamine Detection", Analyst, 2020, 145, 1158-1168. https://doi.org/10.1039/C9AN01586H
- C. Xu, F. Wu, P. Yu, and L. Mao, "In vivo Electrochemical Sensors for Neurochemicals: Recent Update", ACS Sens., 2019, 4, 3102-3118. https://doi.org/10.1021/acssensors.9b01713
- K. O. Kim and G. J. Kim, "Amperometric Properties of Immobilized Glucose Oxidase on a Cellulose Nanomembrane Patch Sensor", Text. Sci. Eng., 2018, 55, 22-28.
- T. Lim and H. Zhang, "Multilayer Carbon Nanotube/gold Nanoparticle Composites on Gallium-based Liquid Metals for Electrochemical Biosensing", ACS Appl. Nano Mater., 2021, 4, 12690-12701. https://doi.org/10.1021/acsanm.1c03244
- T. Lim, S. Won, I. W. Nam, J. S. Choi, C. H. Kim, T. H. Kim, J. H. Kim, S. Y. Yeo, H. Zhang, and B. J. Yeang, "Gold Nanoparticle/carbon Fiber Hybrid Structure from the Ecofriendly and Energy-efficient Process for Electrochemical Biosensing", ACS Sustainable Chem. Eng., 2022, 10, 8815-8824. https://doi.org/10.1021/acssuschemeng.2c01556
- R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu, Z. Liu, T. Luo, S. Choi, K. Hippalgaonkar, M. P. de Boer, and S. Shen, "Crystalline Polymer Nanofibers with Ultra-high Strength and Thermal Conductivity", Nat. Commun., 2018, 9, 1664. https://doi.org/10.1038/s41467-018-03978-3
- T. Kida, K. Hamasaki, Y. Hiejima, S. Maeda, and K. Nitta, "Microscopic Origin of Elastic and Plastic Deformation in poly(ether-block-amide) Elastomers under Various Conditions", J. Soc. Rheology, Japan, 2020, 48, 153-160. https://doi.org/10.1678/rheology.48.153
- Y. Song, H. Yamamoto, and N. Nemoto, "Segmental Orientations and Deformation Mechanism of Poly(etherblock- amide) Films", Macromolecules, 2004, 37, 6219-6226. https://doi.org/10.1021/ma0400620
- N. Rahman, A. Isanasari, R. Anggraeni, S. Honggokusumo, M. Iguchi, T. Masuko, and K. Tashiro, "Modern Interpretation on the High-stretching of Natural Rubber Attained by the Classic 'Racking' Method", Polymer, 2003, 44, 283-288. https://doi.org/10.1016/S0032-3861(02)00767-X
- J. K. Keum, H. Jeon, H. H. Song, J. Choi, and Y. Son, "Orientation-induced Crystallization of Poly(ethylene terephthalate) Fiber with Controlled Microstructure", Polymer, 2008, 49, 4882-4888. https://doi.org/10.1016/j.polymer.2008.08.050
- S. Byun, J. Y. Sim, Z. Zhou, J. Lee, R. Qazi, M. C. Walicki, K. E. Parker, M. P. Haney, S. H. Choi, A. Shon, G. B. Gereau, J. Bilbily, S. Li, Y. Liu, W. Yeo, J. G. McCall, J. Xiao, and J. Jeong, "Mechanically Transformative Electronics, Sensors, and Implantable Devices", Sci. Adv., 2019, 5, eaay0418. https://doi.org/10.1126/sciadv.aay0418
- L. Luan, X. Wei, Z. Zhao, J. J. Siegel, O. Potnis, C. A. Tuppen, S. Lin, S. Kazmi, R. A. Fowler, S. Holloway, A. K. Dunn, R. A. Chitwood, and C. Xie, "Ultraflexible Nanoelectronic Probes form Reliable, Glial Scar-free Neural Integration", Sci. Adv., 2017, 3, e1601966. https://doi.org/10.1126/sciadv.1601966
- D. Kim, P. Thissen, G. Viner, D. Lee, W. Choi, Y. J. Chabal, and J. B. Lee, "Recovery of Nonwetting Characteristics by Surface Modification of Gallium-based Liquid Metal Droplets Using Hydrochloric Acid Vapor", ACS Appl. Mater. Interfaces, 2013, 5, 179-185. https://doi.org/10.1021/am302357t
- E. P. Randviir and C. E. Banks, "Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications", Anal. Methods, 2013, 5, 1098-1115. https://doi.org/10.1039/c3ay26476a
- M. Fazel, H. R. Salimijazi, and M. Shamanian, "Improvement of Corrosion and Tribocorrosion Behavior of Pure Titanium by Subzero Anodic Spark Oxidation", ACS Appl. Mater. Interfaces, 2018, 10, 15281-15287. https://doi.org/10.1021/acsami.8b02331
- T. D. Y. Kozai, N. B. Langhals, P. R. Patel, X. Deng, H. Zhang, K. L. Smith, J. Lahann, N. A. Kotov, and D. R. Kipke, "Ultrasmall Implantable Composite Microelectrodes with Bioactive Surfaces for Chronic Neural Interfaces", Nat. Mater., 2012, 11, 1065-1073. https://doi.org/10.1038/nmat3468
- H. Zhang, J. Shih, J. Zhu, and N. A. Kotov, "Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Device", Nano Lett., 2012, 12, 3391-3398. https://doi.org/10.1021/nl3015632
- Y. Si, Y. E. Park, J. E. Lee, and H. J. Lee, "Nanocomposites of poly(L-methionine), Carbon Nanotube-graphene Complexes and Au Nanoparticles on Screen Printed Carbon Electrodes for Electrochemical Analyses of Dopamine and Uric Acid in Human Urine Solutions", Analyst, 2020, 145, 3656-3665. https://doi.org/10.1039/C9AN02638J
- M. Hsu, Y. Chen, C. Lee, and H. Chiu, "Gold Nanostructures on Flexible Substrates as Electrochemical Dopamine Sensors", ACS Appl. Mater. Interfaces, 2012, 4, 5570-5575. https://doi.org/10.1021/am301452b