DOI QR코드

DOI QR Code

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network

합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델

  • Received : 2022.06.15
  • Accepted : 2022.06.30
  • Published : 2022.08.31

Abstract

The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

본 연구는 자율운항 선박의 연료 계통 펌프와 청정기를 대상으로 고장을 진단 사례를 제시하였다. 계측된 신호의 시간종속성을 반영한 심층학습(Deep learning) 알고리즘 적용 절차를 구성하고, 장비의 정상 운전상태와 고장 상태에서 계측한 진동 신호를 고장 패턴 학습에 사용하였다. 특히, 진동 신호에 내포된 열화의 시간 종속성을 반영할 수 있는 방법을 찾고자 하였으며, 슬라이딩 윈도우 연산 과정을 가진 Conv1D를 이용하여고장의 시간 종속성을 반영하였다. 또한 계측된 신호의 차수를 2차원에서 3차원으로 확장하여 시간 영역의 특징을 반영할 수 있는 데이터 전처리과정을 고안하였다. Conv1D 알고리즘의 적층과 변수를 결정하는 과정에서 그리드 탐색 기법을 사용하여 초매개변수의 최적 값을 결정하였다. 마지막으로 제안한 데이터 전처리 방법과 시계열 데이터의 시간 종속성을 반영한 Conv1D 모델이 이상 감지 및 고장 진단에 타당성이 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통산자원부(해양수산부) 및 산업기술평가관리원(해양수산과학기술진흥원) 연구비 지원으로 수행된 자율운항선박 기술개발사업(20011164, 자율운항선박 핵심 기관시스템 성능 모니터링 및 고장예측/진단 시스템 기술 개발연구)의 연구결과입니다. 본 연구는 한국기계연구원에서 제공한 계측 데이터를 사용하였으며, 이에 감사드립니다.

References

  1. Agrawal, A. and Mittal, N.(2020), "Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy", The Visual Computer, Vol. 36, No. 2, pp. 405-412. https://doi.org/10.1007/s00371-019-01630-9
  2. Aslam, S., Michaelides, M. P. and Herodotou, H.(2020), "Internet of ships: A survey on architectures, emerging applications, and challenges", IEEE Internet of Things journal, Vol. 7, No. 10, pp. 9714-9727. https://doi.org/10.1109/jiot.2020.2993411
  3. Chen, Y. H., Krishna, T., Emer, J. S. and Sze, V.(2016), "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks", IEEE journal of solid-state circuits, Vol. 52, No. 1, pp. 127-138. https://doi.org/10.1109/JSSC.2016.2616357
  4. Chou, J. S. and Nguyen, T. K.(2018), "Forward forecast of stock price using sliding-window metaheuristic-optimized machine-learning regression", IEEE Transactions on Industrial Informatics, Vol. 14, No. 7, pp. 3132-3142. https://doi.org/10.1109/tii.2018.2794389
  5. Ellefsen, A. L., Asoy, V., Ushakov, S. and Zhang, H. (2019), "A comprehensive survey of prognostics and health management based on deep learning for autonomous ships", IEEE Transactions on Reliability, Vol. 68, No. 2, pp. 720-740. https://doi.org/10.1109/tr.2019.2907402
  6. He, M. and He, D.(2017), "Deep learning based approach for bearing fault diagnosis", IEEE Transactions on Industry Applications, Vol. 53, No. 3, pp. 3057-3065. https://doi.org/10.1109/TIA.2017.2661250
  7. Jung, H. C., Sun, Y. G., Lee, D. G., Kim, S. H., Hwang, Y. M., Sim, I., Oh, S. K., Song, S. H. and Kim, J. Y.(2019), "Prediction for energy demand using 1D-CNN and bidirectional LSTM in Internet of energy", Journal of IKEEE, Vol. 23, No. 1, pp. 134-142. https://doi.org/10.7471/IKEEE.2019.23.1.134
  8. Kattenborn, T., Leitloff, J., Schiefer, F. and Hinz, S. (2021), "Review on Convolutional Neural Networks (CNN) in vegetation remote sensing", ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 173, pp. 24-49. https://doi.org/10.1016/j.isprsjprs.2020.12.010
  9. Lee, S. H., Kim, J. Y., Lee, J. J., Kim, Y. J., Kim, S. G. and Lee, T. H. (2022), "A Study on the Development of Database and Algorithm for Fault Diagnosis for Condition Based Maintenance of Rubber Seal in Ancillary Equipment of Autonomous Ships", Journal of Applied Reliability, Vol. 22, No. 1, pp. 48-58. https://doi.org/10.33162/JAR.2022.3.22.1.048
  10. Lei, Y., Lin, J., He, Z. and Zuo, M. J.(2013), "A review on empirical mode decomposition in fault diagnosis of rotating machinery", Mechanical systems and signal processing, Vol. 35, No.1-2, pp. 108-126. https://doi.org/10.1016/j.ymssp.2012.09.015
  11. Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N. and Nandi, A. K.(2020), "Applications of machine learning to machine fault diagnosis: A review and roadmap", Mechanical Systems and Signal Processing, Vol. 138, p. 106587.
  12. Liang, C., Wang, S., Chen, R., Zhao, S. and Wu, Y. (2020). "Research on ship electronic power system fault diagnosis based on expert system", In IOP Conference Series: Materials Science and Engineering, Vol. 17, No. 1, pp. 12-17.
  13. Liu, R., Yang, B., Zio, E. and Chen, X.(2018), "Artificial intelligence for fault diagnosis of rotating machinery: A review", Mechanical Systems and Signal Processing, Vol. 108, pp. 33-47. https://doi.org/10.1016/j.ymssp.2018.02.016
  14. Sharma, N., Jain, V. and Mishra, A.(2018), "An analysis of convolutional neural networks for image classification", Procedia computer science, Vol. 132, pp. 377-384. https://doi.org/10.1016/j.procs.2018.05.198
  15. Tao, H., Wang, P., Chen, Y., Stojanovic, V. and Yang, H.(2020). "An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks", Journal of the Franklin Institute, Vol. 357, No. 11, pp. 7286-7307. https://doi.org/10.1016/j.jfranklin.2020.04.024
  16. Tran, T. N.(2021), "Grid Search of Convolutional Neural Network model in the case of load forecasting", Archives of Electrical Engineering, Vol. 70, No. 1.
  17. Verstraete, D., Ferrada, A., Droguett, E. L., Meruane, V. and Modarres, M.(2017), "Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings", Shock and Vibration.
  18. Wang, J., Xiao, Y., Li, T. and Chen, C. P.(2020), "A survey of technologies for unmanned merchant ships", IEEE Access, Vol. 8, pp. 224461-224486. https://doi.org/10.1109/ACCESS.2020.3044040
  19. Wu, H. and Gu, X.(2015), "Towards dropout training for convolutional neural networks", Neural Networks, Vol. 71, pp. 1-10. https://doi.org/10.1016/j.neunet.2015.07.007
  20. Yahmed, Y. B., Bakar, A. A., Hamdan, A. R., Ahmed, A. and Abdullah, S. M. S.(2015), "Adaptive sliding window algorithm for weather data segmentation", Journal of theoretical and applied information technology, Vol. 80, No. 2, pp. 322.
  21. Zhang, K., Zuo, W., Gu, S. and Zhang, L.(2017), "Learning deep CNN denoiser prior for image restoration", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3929-3938.
  22. Zhang, Y. and Wallace, B.(2015), "A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification", arXiv preprint arXiv:1510.03820.
  23. Zhao, L., Cheng, B. and Chen, J. (2019), "A Hybrid Time Series Model based on Dilated Conv1D and LSTM with Applications to PM2. 5 Forecasting", Aust. J. Intell. Inf. Process. Syst., Vol. 17, No. 2, pp. 49-60.