참고문헌
- S. J. Lee, S. J. Kim, Essential Anti-Corrosive Behavior of Anodized Al Alloy by Applied Current Density, Applied Surface Science, 481, 637 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.03.155
- C. Jeong, C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
- H. Takahashi, M. Chiba, Role of Anodic Oxide Films in the Corrosion of Aluminum and its Alloys, Corrosion Reviews, 36, 35 (2018). Doi: https://doi.org/10.1515/corrrev-2017-0048
- C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
- C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
- V. Dumitrascum, L. Benea, E. Danaila, Corrosion Behavior of Aluminum Oxide Film Growth by Controlled Anodic Oxidation, IOP Conference Series: Materials Science and Engineering, 209, 012016 (2017). Doi: https://doi.org/10.1088/1757-899X/209/1/012016
- S. H. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089
- A. M. Abd-Elnaiem, A. M. Mebed, A, Gaber, M. A. Abdel-Rahim, Effect of the Anodization Parameters on the Volume Expansion of Anodized Aluminum Films, Int. J. Electrochem. Sci, 8, 10515 (2013). Doi: http://www.electrochemsci.org/papers/vol8/80810515.pdf 10515.pdf
- L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing Aluminum Corrosion Resistance by Two-Step Anodizing Process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046
- A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862
- C. Jeong, Ph.D. Thesis, pp. 2 - 5, Stevens Institute of Technology, New Jersey (2013).
- I. Tsangaraki-Kaplanoglou, S. Theohari, T. Dimogerontakis, Y. M. Wang, H.H. Kuo, S. Kia, Effect of Alloy Types on the Anodizing Process of Aluminum, Surface and Coatings Technology, 200, 2634 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2005.07.065
- Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, Z. Wang, W. Huang, Effect of Anodizing Parameters on Film Morophology and Corrosion Resistance of AA2099 Aluminum- Lithium Alloy, Journal of the Electrochemical Society, 163, C36 (2016). Doi: https://doi.org/10.1149/2.1081607jes
- L. Benea, N. Simionescu-Bogatu, R, Chiriac, Electrochemically Obtained Al2O3 Nanoporous Layers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2639 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038
- W. Lee, S. J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemial Reviews, 114, 7487 (2014). Doi: https://doi.org/10.1021/cr500002z
- K. S. Choudhari, C. H. Choi, S. Chidangil, S. D. George, Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina, Nanomaterials, 12, 444 (2022). Doi: https://doi.org/10.3390/nano12030444
- J. G. Buijnsters, R. Zhong, N. Tsyntsaru, J. P. Celis, Surface Wettability of Macroporous Anodized Aluminum Oxide, Acs Applied materials & Interfaces, 5, 3224 (2013). Doi: https://doi.org/10.1021/am4001425
- Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corrosion Science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8
- R. T. Foley, Localized Corrosion of Aluminum Alloys- A Review, Corrosion, 42, 277 (1986). Doi: https://doi.org/10.5006/1.3584905
- A. M. Abd-Elnaiem, A, Gaber, Parametric Study on the Anodization of Pure Aluminum Thin Film Used in Fabricating Nano-Pores Template, International Journal of Electrochemical Science, 8, 9741 (2013). Doi: http://www.electrochemsci.org/papers/vol8/80709741.pdf https://doi.org/10.1016/S1452-3981(23)13008-2
- S.K. Thamida, H. C. Chang, Nanoscale Pore Formation Dynamics during Aluminum Anodization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12, 240 (2022). Doi: https://doi.org/10.1063/1.1436499
- C. Jeong, H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
- F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans, X. Duan, Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum, Angewandte Chemie, 120, 2500 (2008). Doi: https://doi.org/10.1002/ange.200704694
- J. A. Davies, B. Domeji, J. P. S. Pringle, F. Brown, The Migration of Metal and Oxygen during Anodic Film Formation, Jouranl of the Electrochemical Society, 112, 675 (1965). Doi: https://doi.org/10.1149/1.2423662
- M. Mehdizade, M. Soltanieh, A. R. Eivani, Investigation of Anodizing time and Pulse Voltage Modes on the Corrosion Behavior of Nanostructured Anodic Layer in Commercial Pure Aluminum, Surface and Coatings Technology, 358, 741 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2018.08.046
- L. Zaraska, G. D. Sulka, J. Szeremeta, M. Jaskula, Porous Anodic Alumina Formed by Anodization of Aluminum Alloy(AA1050) and High Purity Aluminum, Electrochimica Acta, 55, 4377 (2010). Doi: https://doi.org/10.1016/j.electacta.2009.12.054
- A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, Localized Alkaline Corrosion of Alloy AA5083 in neutral 3.5% NaCl Solution, Corrosion Science, 43, 1657 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00166-9
- J. Oh, C. V. Thompson, The Role of Electric Field in Pore Formation during Aluminum Anodization, Electrochimica Acta, 56, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002
- S. De Souza, D. S. Yoshikawa, W. A. S. lzaltino, S. L. Assis, I. Costa, Self-assembling Molecules as Corrosion Inhibitors for 1050 Aluminum, Surface and Coatings Technology, 204, 3238 (2010). Doi: https://doi.org/10.1016/j.surfcoat.2010.03.021
- S. Wang, Y. Gu, Y. Geong, J. Liang, J. Zhao. J. Kang, Investigating Local Corrosion Behavior and Mechanism of MAO Coated 7075 Aluminum Alloy, Journal of Alloys and Compounds, 826, 153976 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.153976
- R. Najjar, S. A. Katourani, M. G. Hosseini, Self-healing and Corrosion Protection performance of Organic Polysulfide @ Urea-formaldehyde Resin Core-shell Nanoparticles in Epoxy/PANI/ZnO Nanocomposite coatings on Anodized Aluminum Alloy, Progress in Organic Coatings, 124, 10 (2018). Doi: https://doi.org/10.1016/j.porgcoat.2018.08.015
- J. Oh, C. V. Thompson, The Role of Electric Field in Pore Formation during Aluminum Anodization, Electrochimica Acta, 15, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002
- B. Kasalica, J. Radic-Peric, M. Peric, M. Petkovic-Benazzouz, L. Belca, M. Sarvam, The Mechanism of Evolution of Microdischarges at the Beginning of the PEO Process on Aluminum, Surface and Coatings Technology, 298, 24 (2016). Doi: https://doi.org/10.1016/j.surfcoat.2016.04.044