DOI QR코드

DOI QR Code

EVALUATIONS OF THE ROGERS-RAMANUJAN CONTINUED FRACTION BY THETA-FUNCTION IDENTITIES REVISITED

  • Yi, Jinhee (Department of Mathematics and Computer Science, Korea Science Academy of KAIST) ;
  • Paek, Dae Hyun (Department of Mathematics Education, Busan National University of Education)
  • Received : 2022.04.12
  • Accepted : 2022.06.26
  • Published : 2022.08.31

Abstract

In this paper, we use some theta-function identities involving certain parameters to show how to evaluate Rogers-Ramanujan continued fraction R($e^{-2{\pi}\sqrt{n}}$) and S($e^{-{\pi}\sqrt{n}}$) for $n=\frac{1}{5.4^m}$ and $\frac{1}{4^m}$, where m is any positive integer. We give some explicit evaluations of them.

Keywords

Acknowledgement

This work was supported by the Korea Science Academy of KAIST with funds from the Ministry of Science and ICT.

References

  1. N.D. Baruah & N. Saikia: Some new explicit values of Ramanujan's continued fraction. Indian J. Math. 46 (2004), nos. 2-3, 197-222.
  2. N.D. Baruah & N. Saikia: Two parameters for Ramanujan's theta-functions and their explicit values. Rocky Mountain J. Math. 37 (2007), no. 6, 1747-1790. https://doi.org/10.1216/rmjm/1199649823
  3. B.C. Berndt & H.H. Chan: Some values for the Rogers-Ramanujan continued fraction. Can. J. Math. 47 (1995), no. 5, 897-914. https://doi.org/10.4153/CJM-1995-046-5
  4. B.C. Berndt, H.H. Chan & L.C. Zhang: Explicit evaluations of the Rogers-Ramanujan continued fraction. J. Reine Angew. Math. 480 (1996), 141-159.
  5. H.H. Chan: On Ramanujan's cubic continued fraction. Acta Arith. 73 (1995), 343-355. https://doi.org/10.4064/aa-73-4-343-355
  6. H.H. Chan & V. Tan: On the explicit evaluations of the Rogers-Ramanujan continued fraction. in Continued Fractions: From Analytic Number Theory to Constructive Approximation, B.C. Berndt and F. Gesztesy, eds., Contem. Math. 236, American MAthematical Society, Providence, RI, 1999, 127-136.
  7. D.H. Paek: Evaluations of the Rogers-Ramanujan continued fraction by theta-function identities. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 28 (2021), no. 4, 377-386.
  8. D.H. Paek & J. Yi: On some modular equations of degree 5 and their applications. Bull. Korean Math. Soc. 50 (2013), no. 4, 1315-1328. https://doi.org/10.4134/BKMS.2013.50.4.1315
  9. K.G. Ramanathan: On Ramanujan's continued fraction. Acta Arith. 43 (1984), 209-226. https://doi.org/10.4064/aa-43-3-209-226
  10. K.G. Ramanathan: On the Rogers-Ramanujan continued fraction. Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 67-77. https://doi.org/10.1007/BF02840651
  11. K.G. Ramanathan: Ramanujan's continued fraction. Indian J. Pure Appl. Math. 16 (1985), 695-724.
  12. K.G. Ramanathan: Some applications of Kronecker's limit formula. J. Indian Math. Soc. 52 (1987), 71-89.
  13. N. Saikia: Some new general theorems for the explicit evaluations of the Rogers-Ramanujan continued fraction. Comput. Methods Funct. Theory 13 (2013), 597-611. https://doi.org/10.1007/s40315-013-0040-0
  14. N. Saikia: Some new explicit values of the parameters sn and tn connected with the Rogers-Ramanujan continued fraction and applications. Afr. Mat. 25 (2014), 961-973. https://doi.org/10.1007/s13370-013-0165-3
  15. K.R. Vasuki & M.S. Mahadeva Naika: Some evaluations of the Rogers-Ramanujan continued fractions. Proc. Inter. Conf. on the works of Ramanujan, Mysore, 2000, 209-217.
  16. J. Yi: Evaluations of the Rogers-Ramanujan continued fraction R(q) by modular equations. Acta Arith. 97 (2001), 103-127. https://doi.org/10.4064/aa97-2-2
  17. J. Yi: Theta-function identities and the explicit formulas for theta-function and their applications. J. Math. Anal. Appl. 292 (2004), 381-400. https://doi.org/10.1016/j.jmaa.2003.12.009