DOI QR코드

DOI QR Code

Recent trends in studies of biomolecular phase separation

  • Kim, Chan-Geun (Department of Chemistry, Pusan National University) ;
  • Hwang, Da-Eun (Department of Chemistry, Pusan National University) ;
  • Kumar, Rajeev (Department of Chemistry, Pusan National University) ;
  • Chung, Min (Department of Chemistry, Pusan National University) ;
  • Eom, Yu-Gon (Department of Chemistry, Pusan National University) ;
  • Kim, Hyunji (Department of Chemistry, Pusan National University) ;
  • Koo, Da-Hyun (Department of Chemistry, Pusan National University) ;
  • Choi, Jeong-Mo (Department of Chemistry, Pusan National University)
  • Received : 2022.05.20
  • Accepted : 2022.07.20
  • Published : 2022.08.31

Abstract

Biomolecular phase separation has recently attracted broad interest, due to its role in the spatiotemporal compartmentalization of living cells. It governs the formation, regulation, and dissociation of biomolecular condensates, which play multiple roles in vivo, from activating specific biochemical reactions to organizing chromatin. Interestingly, biomolecular phase separation seems to be a mainly passive process, which can be explained by relatively simple physical principles and reproduced in vitro with a minimal set of components. This Mini review focuses on our current understanding of the fundamental principles of biomolecular phase separation and the recent progress in the research on this topic.

Keywords

Acknowledgement

We appreciate the constructive comments from two anonymous reviewers. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1010943).

References

  1. Harmon TS, Holehouse AS, Rosen MK and Pappu RV (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294
  2. Shin Y and Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382
  3. Ryu JK, Hwang DE and Choi JM (2021) Current understanding of molecular phase separation in chromosomes. Int J Mol Sci 22, 10736
  4. Banani SF, Rice AM, Peeples WB et al (2016) Compositional control of phase-separated cellular bodies. Cell 166, 651-663 https://doi.org/10.1016/j.cell.2016.06.010
  5. Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686-1697 https://doi.org/10.1016/j.cell.2016.04.047
  6. Banjade S and Rosen MK (2014) Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123
  7. Kroschwald S and Alberti S (2017) Gel or Die: phase separation as a survival strategy. Cell 168, 947-948 https://doi.org/10.1016/j.cell.2017.02.029
  8. Riback JA, Katanski CD, Kear-Scott JL et al (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028-1040.e1019 https://doi.org/10.1016/j.cell.2017.02.027
  9. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133 https://doi.org/10.1016/j.cell.2015.09.015
  10. Sheu-Gruttadauria J and MacRae IJ (2018) Phase transitions in the assembly and function of human miRISC. Cell 173, 946-957.e916 https://doi.org/10.1016/j.cell.2018.02.051
  11. Xiao Q, McAtee CK and Su X (2022) Phase separation in immune signalling. Nat Rev Immunol 22, 188-199 https://doi.org/10.1038/s41577-021-00572-5
  12. Wippich F, Bodenmiller B, Trajkovska Maria G, Wanka S, Aebersold R and Pelkmans L (2013) Dual specificity kinase dyrk3 couples stress granule condensation/ dissolution to mTORC1 signaling. Cell 152, 791-805 https://doi.org/10.1016/j.cell.2013.01.033
  13. Fujioka Y, Alam JM, Noshiro D et al (2020) Phase separation organizes the site of autophagosome formation. Nature 578, 301-305 https://doi.org/10.1038/s41586-020-1977-6
  14. Nicolas E, Parisot P, Pinto-Monteiro C, de Walque R, De Vleeschouwer C and Lafontaine DLJ (2016) Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 7, 11390
  15. Cho WK, Spille JH, Hecht M et al (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412-415 https://doi.org/10.1126/science.aar4199
  16. Boyko S and Surewicz WK (2022) Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 32, 611-623 https://doi.org/10.1016/j.tcb.2022.01.011
  17. Wang B, Zhang L, Dai T et al (2021) Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6, 290
  18. Alberti S and Dormann D (2019) Liquid-liquid phase separation in disease. Ann Rev Genet 53, 171-194 https://doi.org/10.1146/annurev-genet-112618-043527
  19. Brangwynne Clifford P, Tompa P and Pappu Rohit V (2015) Polymer physics of intracellular phase transitions. Nat Phys 11, 899-904 https://doi.org/10.1038/nphys3532
  20. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10, 51-61 https://doi.org/10.1063/1.1723621
  21. Hyman AA, Weber CA and Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30, 39-58 https://doi.org/10.1146/annurev-cellbio-100913-013325
  22. Dolgin E (2018) What lava lamps and vinaigrette can teach us about cell biology. Nature 555, 300-303 https://doi.org/10.1038/d41586-018-03070-2
  23. Martin EW, Holehouse AS, Peran I et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694-699 https://doi.org/10.1126/science.aaw8653
  24. Wang J, Choi JM, Holehouse AS et al (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688-699.e616 https://doi.org/10.1016/j.cell.2018.06.006
  25. Rubinstein M and Semenov AN (1998) Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386-1397 https://doi.org/10.1021/ma970617+
  26. Choi J-M, Hyman AA and Pappu RV (2020) Generalized models for bond percolation transitions of associative polymers. Phys Rev E 102, 042403
  27. Huggins ML (1942) Theory of solutions of high polymers1. J Am Chem Soc 64, 1712-1719 https://doi.org/10.1021/ja01259a068
  28. Banani SF, Lee HO, Hyman AA and Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285-298 https://doi.org/10.1038/nrm.2017.7
  29. Choi J-M, Holehouse AS and Pappu RV (2020) Physical principles underlying the complex biology of intracellular phase transitions. Annu Rev Biophys 49, 107-133 https://doi.org/10.1146/annurev-biophys-121219-081629
  30. Jia P, Li X, Wang X et al (2021) ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization. Nat Commun 12, 6535
  31. Zhang H, Ji X, Li P et al (2020) Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci 63, 953-985 https://doi.org/10.1007/s11427-020-1702-x
  32. Paloni M, Bailly R, Ciandrini L and Barducci A (2020) Unraveling molecular interactions in liquid-liquid phase separation of disordered proteins by atomistic simulations. J Phys Chem B 124, 9009-9016 https://doi.org/10.1021/acs.jpcb.0c06288
  33. Bremer A, Farag M, Borcherds WM et al (2022) Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem 14, 196-207 https://doi.org/10.1038/s41557-021-00840-w
  34. Buchan JR and Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36, 932-941 https://doi.org/10.1016/j.molcel.2009.11.020
  35. Fong K, Li Y, Wang W et al (2013) Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 203, 149-164 https://doi.org/10.1083/jcb.201303145
  36. Song D, Jo Y, Choi JM and Jung Y (2020) Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions. Nat Commun 11, 1-13 https://doi.org/10.1038/s41467-019-13993-7
  37. Ruff KM, Dar F and Pappu RV (2021) Ligand effects on phase separation of multivalent macromolecules. Proc Natl Acad Sci U S A 118, 10, e2017184118
  38. Rhine K, Vidaurre V and Myong S (2020) RNA droplets. Annu Rev Biophys 49, 247-265 https://doi.org/10.1146/annurev-biophys-052118-115508
  39. Roden C and Gladfelter AS (2021) RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22, 183-195 https://doi.org/10.1038/s41580-020-0264-6
  40. Wei MT, Elbaum-Garfinkle S, Holehouse AS et al (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9, 1118-1125 https://doi.org/10.1038/nchem.2803
  41. Le Vay K, Song EY, Ghosh B, Tang TYD and Mutschler H (2021) Enhanced ribozyme-catalyzed recombination and oligonucleotide assembly in peptide-RNA condensates. Angew Chem Int Ed 60, 26096-26104 https://doi.org/10.1002/anie.202109267
  42. Grese ZR, Bastos AC, Mamede LD, French RL, Miller TM and Ayala YM (2021) Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties. EMBO Rep 22, e53632
  43. Shao W, Bi X, Pan Y et al (2022) Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol 18, 70-80 https://doi.org/10.1038/s41589-021-00904-5
  44. Li P, Banjade S, Cheng HC et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340 https://doi.org/10.1038/nature10879
  45. Azaldegui CA, Vecchiarelli AG and Biteen JS (2021) The emergence of phase separation as an organizing principle in bacteria. Biophys J 120, 1123-1138 https://doi.org/10.1016/j.bpj.2020.09.023
  46. Fritsch AW, Diaz-Delgadillo AF, Adame-Arana O et al (2021) Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates. Proc Natl Acad Sci U S A 118, e2102772118
  47. Hong K, Song D and Jung Y (2020) Behavior control of membrane-less protein liquid condensates with metal ion-induced phase separation. Nat Commun 11, 5554
  48. Zbinden A, Perez-Berlanga M, De Rossi P and Polymenidou M (2020) Phase separation and neurodegenerative diseases: a disturbance in the force. Dev Cell 55, 45-68 https://doi.org/10.1016/j.devcel.2020.09.014
  49. Wang B, Zhang L, Dai T et al (2021) Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6, 290-290 https://doi.org/10.1038/s41392-021-00678-1
  50. Lednev IK (2014) Amyloid fibrils: the eighth wonder of the world in protein folding and aggregation. Biophys J 106, 1433-1435 https://doi.org/10.1016/j.bpj.2014.02.007
  51. Malki A, Teulon J-M, Camacho-Zarco AR et al (2022) Intrinsically disordered tardigrade proteins self-assemble into fibrous gels in response to environmental stress. Angew Chem Int Ed 61, e202109961
  52. Shen C, Li R, Negro R et al (2021) Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759-5774.e5720 https://doi.org/10.1016/j.cell.2021.09.032
  53. Bergeron-Sandoval LP, Kumar S, Heris HK et al (2021) Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc Natl Acad Sci U S A 118, e2113789118
  54. Zhu P, Lister C and Dean C (2021) Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657-661 https://doi.org/10.1038/s41586-021-04062-5
  55. Sun M, Jia M, Ren H et al (2021) NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation. Nat Commun 12, 7157
  56. Babl L, Giacomelli G, Ramm B, Gelmroth AK, Bramkamp M and Schwille P (2022) CTP-controlled liquid-liquid phase separation of ParB. J Mol Biol 434, 167401
  57. Hnisz D, Shrinivas K, Young RA, Chakraborty AK and Sharp PA (2017) A phase separation model for transcriptional control. Cell 169, 13-23 https://doi.org/10.1016/j.cell.2017.02.007
  58. Palacio M and Taatjes DJ (2022) Merging established mechanisms with new insights: condensates, hubs, and the regulation of rna polymerase II transcription. J Mol Biol 434, 167216
  59. Perez-Schindler J, Kohl B, Schneider-Heieck K et al (2021) RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc Natl Acad Sci U S A 118, e2105951118
  60. Shi Y, Chen J, Zeng WJ et al (2021) Formation of nuclear condensates by the mediator complex subunit Med15 in mammalian cells. BMC Biol 19, 245
  61. Kim GH and Kwon I (2021) Distinct roles of hnRNPH1 low-complexity domains in splicing and transcription. Proc Natl Acad Sci U S A 118, e2109668118
  62. Lee R, Kang MK, Kim YJ et al (2022) CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acid Res 50, 207-226 https://doi.org/10.1093/nar/gkab1242
  63. Long Q, Zhou Y, Wu H et al (2021) Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nat Struct Mol Biol 28, 900-908 https://doi.org/10.1038/s41594-021-00671-w
  64. Hallegger M, Chakrabarti AM, Lee FC et al (2021) TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680-4696. e4622 https://doi.org/10.1016/j.cell.2021.07.018
  65. Sawner AS, Ray S, Yadav P et al (2021) Modulating α-synuclein liquid-liquid phase separation. Biochemistry 60, 3676-3696 https://doi.org/10.1021/acs.biochem.1c00434
  66. Ishiguro A, Lu J, Ozawa D, Nagai Y and Ishihama A (2021) ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid phase separation and liquid-to-solid transition. J Biol Chem 297, 101284
  67. Wurtz JD and Lee CF (2018) Chemical-reaction-controlled phase separated drops: formation, size selection, and coarsening. Phys Rev Lett 120, 078102
  68. Folkmann AW, Putnam A, Lee CF and Seydoux G (2021) Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218-1224 https://doi.org/10.1126/science.abg7071
  69. Qi Y and Zhang B (2021) Chromatin network retards nucleoli coalescence. Nat Commun 12, 6824
  70. Abbas M, Lipinski WP, Nakashima KK, Huck WTS and Spruijt E (2021) A short peptide synthon for liquid-liquid phase separation. Nat Chem 13, 1046-1054 https://doi.org/10.1038/s41557-021-00788-x
  71. Scott WA, Gharakhanian EG, Bell AG et al (2021) Active controlled and tunable coacervation using side-chain functional α-helical homopolypeptides. J Am Chem Soc 143, 18196-18203 https://doi.org/10.1021/jacs.1c07925
  72. Lee T, Do S, Lee JG, Kim DN and Shin Y (2021) The flexibility-based modulation of DNA nanostar phase separation. Nanoscale 13, 17638-17647 https://doi.org/10.1039/D1NR03495B
  73. Sato Y and Takinoue M (2022) Capsule-like DNA hydrogels with patterns formed by lateral phase separation of DNA nanostructures. J Am Chem Soc Au 2, 159-168
  74. Agarwal A, Rai SK, Avni A and Mukhopadhyay S (2021) An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquid-liquid phase separation. Proc Natl Acad Sci U S A 118, e2100968118
  75. Liu Q, Li J, Zhang W et al (2021) Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559-5576.e5519 https://doi.org/10.1016/j.cell.2021.10.001