DOI QR코드

DOI QR Code

Phosphate-decorated Pt Nanoparticles as Methanol-tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells

  • Choi, Jung-goo (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Ham, Kahyun (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Bong, Sungyool (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 투고 : 2022.02.15
  • 심사 : 2022.03.30
  • 발행 : 2022.08.28

초록

In a direct methanol fuel cell system (DMFC), one of the drawbacks is methanol crossover. Methanol from the anode passes through the membrane and enters the cathode, causing mixed potential in the cell. Only Pt-based catalysts are capable of operating as cathode for oxygen reduction reaction (ORR) in a harsh acidic condition of DMFC. However, it causes mixed potential due to high activity toward methanol oxidation reaction of Pt. To overcome this situation, developing Pt-based catalyst that has methanol tolerance is significant, by controlling reactant adsorption or reaction kinetics. Pt/C decorated with phosphate ion was prepared by modified polyol method as cathode catalyst in DMFC. Phosphate ions, bonded to the carbon of Pt/C, surround free Pt surface and block only methanol adsorption on Pt, not oxygen. It leads to the suppression of methanol oxidation in an oxygen atmosphere, resulting in high DMFC performance compared to pristine Pt/C.

키워드

과제정보

This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT(NRF-2021K1A4A8A01079455).

참고문헌

  1. B. Jeong, J.D. Ocon, J. Lee, Angew. Chem. -Int. Ed., 2016, 55(16), 4870-4880. https://doi.org/10.1002/anie.201507780
  2. R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, John Wiley & Sons, 2016.
  3. M.C. Williams, D. Shekhawat, J.J. Spivey, D.A. Berry (Eds.), Fuel Cells: Technologies for Fuel Processing, Elsevier, Amsterdam, 2011, 11-27.
  4. O.Z. Sharaf, M.F. Orhan, Renew. Sust. Energ. Rev., 2014, 32, 810-853. https://doi.org/10.1016/j.rser.2014.01.012
  5. M.R. von Spakovsky, B. Olsommer, Energy Conv. Manag., 2002, 43(9-12), 1249-1257. https://doi.org/10.1016/S0196-8904(02)00011-0
  6. C.M. Miesse, W.S. Jung, K.-J. Jeong, J.K. Lee, J. Lee, J. Han, S.P. Yoon, S.W. Nam, T.-H. Lim, S.-A. Hong, J. Power Sources, 2006, 162(1), 532-540. https://doi.org/10.1016/j.jpowsour.2006.07.013
  7. B.C. Ong, S.K. Kamarudin, S. Basri, Int. J. Hydrog. Energy, 2017, 42(15), 10142-10157. https://doi.org/10.1016/j.ijhydene.2017.01.117
  8. S. Hong, H. Hwang, J.P. Hwang, J.W. Kim, C.H. Lee, J. Lee, Catal. Today, 2021, 359, 28-34. https://doi.org/10.1016/j.cattod.2019.06.042
  9. S. Uhm, T. Noh, Y.D. Kim, J. Lee, ChemPhysChem, 2008, 9(10), 1425-1429. https://doi.org/10.1002/cphc.200800049
  10. H. Hwang, S. Hong, D.-H. Kim, M.-S. Kang, J.-S. Park, S. Uhm, J. Lee, J. Energy Chem., 2020, 51, 175-181. https://doi.org/10.1016/j.jechem.2020.03.081
  11. L. Gong, Z. Yang, K. Li, W. Xing, C. Liu, J. Ge, J. Energy Chem., 2018, 27(6), 1618-1628. https://doi.org/10.1016/j.jechem.2018.01.029
  12. A. Heinzel, V.M. Barragan, J. Power Sources, 1999, 84(1), 70-74. https://doi.org/10.1016/S0378-7753(99)00302-X
  13. J.K. Lee, J. Choi, S.J. Kang, J.M. Lee, Y. Tak, J. Lee, Electrochim. Acta, 2007, 52(6), 2272-2276. https://doi.org/10.1016/j.electacta.2006.05.064
  14. D. Lee, S. Gok, Y. Kim, Y.-E. Sung, E. Lee, J.-H. Jang, J.Y. Hwang, O.J. Kwon, T. Lim, ACS Appl. Mater. Interfaces, 2020, 12(40), 44588-44596. https://doi.org/10.1021/acsami.0c07812
  15. J. Cruickshank, K. Scott, J. Power Sources, 1998, 70(1), 40-47. https://doi.org/10.1016/S0378-7753(97)02626-8
  16. K.G. Nishanth, P. Sridhar, S. Pitchumani, A.K. Shukla, J. Electrochem. Soc., 2011, 158(8), B871. https://doi.org/10.1149/1.3596542
  17. X. Li, A. Faghri, J. Power Sources, 2013, 226, 223-240. https://doi.org/10.1016/j.jpowsour.2012.10.061
  18. Z. Wen, J. Liu, J. Li, Adv. Mater., 2008, 20(4), 743-747. https://doi.org/10.1002/adma.200701578
  19. S.-H. Liu, J.-R. Wu, Int. J. Hydrog. Energy, 2011, 36(1), 87-93. https://doi.org/10.1016/j.ijhydene.2010.10.048
  20. L. Lu, R. Li, K. Fujiwara, X. Yan, H. Kobayashi, W. Yi, J. Fan, J. Phys. Chem. C, 2016, 120(21), 11572-11580. https://doi.org/10.1021/acs.jpcc.6b02993
  21. K. Ham, S. Chung, J. Lee, J. Power Sources, 2020, 450, 227650. https://doi.org/10.1016/j.jpowsour.2019.227650
  22. K. Ham, S. Chung, M. Choi, S. Yang, J. Lee, Appl. Chem. Eng., 2019, 30(4), 493-498.
  23. H.-S. Oh, J.-G. Oh, H. Kim, J. Power Sources, 2008, 183(2), 600-603. https://doi.org/10.1016/j.jpowsour.2008.05.070
  24. J. Choi, K. Ham, J. Lee, ECS Trans., 2020, 98(9), 625. https://doi.org/10.1149/09809.0625ecst
  25. K. Kinoshita, J. Electrochem. Soc., 1990, 137(3), 845. https://doi.org/10.1149/1.2086566
  26. J. Seo, S. Lee, B. Koo, W. Jung, Crystengcomm, 2018, 20(14), 2010-2015. https://doi.org/10.1039/C7CE02235B
  27. K. Ham, D. Shin, J. Lee, ChemSusChem, 2020, 13(7), 1751-1758. https://doi.org/10.1002/cssc.201903403
  28. I. Herrmann, U.I. Kramm, J. Radnik, S. Fiechter, P. Bogdanoff, J. Electrochem. Soc., 2009, 156(10), B1283. https://doi.org/10.1149/1.3185852
  29. X. Wu, K. Gong, G. Zhao, W. Lou, X. Wang, W. Liu, RSC Adv., 2018, 8(9), 4595-4603. https://doi.org/10.1039/C7RA11691H
  30. L. Zhao, RSC Adv., 2017, 7(23), 13904-13910. https://doi.org/10.1039/C6RA28630E
  31. Y. Li, S. Li, Y. Wang, J. Wang, H. Liu, X. Liu, L. Wang, X. Liu, W. Xue, N. Ma, Phys. Chem. Chem. Phys., 2017, 19(18), 11631-11638. https://doi.org/10.1039/C6CP06377B
  32. B. Peng, Y. Xu, K. Liu, X. Wang, F.M. Mulder, ChemElectroChem, 2017, 4(9), 2140-2144.
  33. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim. Acta, 2008, 53(7), 3181-3188. https://doi.org/10.1016/j.electacta.2007.11.057
  34. T. Binninger, E. Fabbri, R. Kotz, T.J. Schmidt, J. Electrochem. Soc., 2014, 161(3), H121-H128. https://doi.org/10.1149/2.055403jes
  35. K. Ham, S. Chung, J. Lee, Appl. Chem. Eng., 2019, 30(6), 659-666.
  36. Q. He, X. Yang, W. Chen, S. Mukerjee, B. Koel, S. Chen, Phys. Chem. Chem. Phys., 2010, 12(39), 12544-12555. https://doi.org/10.1039/c0cp00433b
  37. S. Kaserer, K.M. Caldwell, D.E. Ramaker, C. Roth, J. Phys. Chem. C, 2013, 117(12), 6210-6217. https://doi.org/10.1021/jp311924q
  38. K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M.N. Banis, P. Zhang, F. Li, J. Li, L. Chen, NPG Asia Mater., 2015, 7(1), e153-e153. https://doi.org/10.1038/am.2014.122
  39. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett., 2009, 9(6), 2255-2259. https://doi.org/10.1021/nl900397t
  40. L. Kuai, S. Wang, B. Geng, Chem. Commun., 2011, 47(21), 6093-6095. https://doi.org/10.1039/c0cc05429a
  41. A. M. Hofstead-Duffy, D.-J. Chen, S.-G. Sun, Y. J. Tong, J. Mater. Chem., 2012, 22(11), 5205-5208. https://doi.org/10.1039/c2jm15426a
  42. D.Y. Chung, K.-J. Lee, Y.-E. Sung, J. Phys. Chem. C., 2016, 120(17), 9028-9035.
  43. T. Iwasita, Electrochim. Acta, 2002, 47(22-23), 3663-3674. https://doi.org/10.1016/S0013-4686(02)00336-5
  44. N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, R.A. van Santen, J. Phys. Chem. B, 2002, 106(50), 12938-12947. https://doi.org/10.1021/jp0204105
  45. A.J. Bard, Electroanalytical Chemistry a Series of Advances, Marcel Dekker, New York, 1991, 181.