과제정보
This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT(NRF-2021K1A4A8A01079455).
참고문헌
- B. Jeong, J.D. Ocon, J. Lee, Angew. Chem. -Int. Ed., 2016, 55(16), 4870-4880. https://doi.org/10.1002/anie.201507780
- R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, John Wiley & Sons, 2016.
- M.C. Williams, D. Shekhawat, J.J. Spivey, D.A. Berry (Eds.), Fuel Cells: Technologies for Fuel Processing, Elsevier, Amsterdam, 2011, 11-27.
- O.Z. Sharaf, M.F. Orhan, Renew. Sust. Energ. Rev., 2014, 32, 810-853. https://doi.org/10.1016/j.rser.2014.01.012
- M.R. von Spakovsky, B. Olsommer, Energy Conv. Manag., 2002, 43(9-12), 1249-1257. https://doi.org/10.1016/S0196-8904(02)00011-0
- C.M. Miesse, W.S. Jung, K.-J. Jeong, J.K. Lee, J. Lee, J. Han, S.P. Yoon, S.W. Nam, T.-H. Lim, S.-A. Hong, J. Power Sources, 2006, 162(1), 532-540. https://doi.org/10.1016/j.jpowsour.2006.07.013
- B.C. Ong, S.K. Kamarudin, S. Basri, Int. J. Hydrog. Energy, 2017, 42(15), 10142-10157. https://doi.org/10.1016/j.ijhydene.2017.01.117
- S. Hong, H. Hwang, J.P. Hwang, J.W. Kim, C.H. Lee, J. Lee, Catal. Today, 2021, 359, 28-34. https://doi.org/10.1016/j.cattod.2019.06.042
- S. Uhm, T. Noh, Y.D. Kim, J. Lee, ChemPhysChem, 2008, 9(10), 1425-1429. https://doi.org/10.1002/cphc.200800049
- H. Hwang, S. Hong, D.-H. Kim, M.-S. Kang, J.-S. Park, S. Uhm, J. Lee, J. Energy Chem., 2020, 51, 175-181. https://doi.org/10.1016/j.jechem.2020.03.081
- L. Gong, Z. Yang, K. Li, W. Xing, C. Liu, J. Ge, J. Energy Chem., 2018, 27(6), 1618-1628. https://doi.org/10.1016/j.jechem.2018.01.029
- A. Heinzel, V.M. Barragan, J. Power Sources, 1999, 84(1), 70-74. https://doi.org/10.1016/S0378-7753(99)00302-X
- J.K. Lee, J. Choi, S.J. Kang, J.M. Lee, Y. Tak, J. Lee, Electrochim. Acta, 2007, 52(6), 2272-2276. https://doi.org/10.1016/j.electacta.2006.05.064
- D. Lee, S. Gok, Y. Kim, Y.-E. Sung, E. Lee, J.-H. Jang, J.Y. Hwang, O.J. Kwon, T. Lim, ACS Appl. Mater. Interfaces, 2020, 12(40), 44588-44596. https://doi.org/10.1021/acsami.0c07812
- J. Cruickshank, K. Scott, J. Power Sources, 1998, 70(1), 40-47. https://doi.org/10.1016/S0378-7753(97)02626-8
- K.G. Nishanth, P. Sridhar, S. Pitchumani, A.K. Shukla, J. Electrochem. Soc., 2011, 158(8), B871. https://doi.org/10.1149/1.3596542
- X. Li, A. Faghri, J. Power Sources, 2013, 226, 223-240. https://doi.org/10.1016/j.jpowsour.2012.10.061
- Z. Wen, J. Liu, J. Li, Adv. Mater., 2008, 20(4), 743-747. https://doi.org/10.1002/adma.200701578
- S.-H. Liu, J.-R. Wu, Int. J. Hydrog. Energy, 2011, 36(1), 87-93. https://doi.org/10.1016/j.ijhydene.2010.10.048
- L. Lu, R. Li, K. Fujiwara, X. Yan, H. Kobayashi, W. Yi, J. Fan, J. Phys. Chem. C, 2016, 120(21), 11572-11580. https://doi.org/10.1021/acs.jpcc.6b02993
- K. Ham, S. Chung, J. Lee, J. Power Sources, 2020, 450, 227650. https://doi.org/10.1016/j.jpowsour.2019.227650
- K. Ham, S. Chung, M. Choi, S. Yang, J. Lee, Appl. Chem. Eng., 2019, 30(4), 493-498.
- H.-S. Oh, J.-G. Oh, H. Kim, J. Power Sources, 2008, 183(2), 600-603. https://doi.org/10.1016/j.jpowsour.2008.05.070
- J. Choi, K. Ham, J. Lee, ECS Trans., 2020, 98(9), 625. https://doi.org/10.1149/09809.0625ecst
- K. Kinoshita, J. Electrochem. Soc., 1990, 137(3), 845. https://doi.org/10.1149/1.2086566
- J. Seo, S. Lee, B. Koo, W. Jung, Crystengcomm, 2018, 20(14), 2010-2015. https://doi.org/10.1039/C7CE02235B
- K. Ham, D. Shin, J. Lee, ChemSusChem, 2020, 13(7), 1751-1758. https://doi.org/10.1002/cssc.201903403
- I. Herrmann, U.I. Kramm, J. Radnik, S. Fiechter, P. Bogdanoff, J. Electrochem. Soc., 2009, 156(10), B1283. https://doi.org/10.1149/1.3185852
- X. Wu, K. Gong, G. Zhao, W. Lou, X. Wang, W. Liu, RSC Adv., 2018, 8(9), 4595-4603. https://doi.org/10.1039/C7RA11691H
- L. Zhao, RSC Adv., 2017, 7(23), 13904-13910. https://doi.org/10.1039/C6RA28630E
- Y. Li, S. Li, Y. Wang, J. Wang, H. Liu, X. Liu, L. Wang, X. Liu, W. Xue, N. Ma, Phys. Chem. Chem. Phys., 2017, 19(18), 11631-11638. https://doi.org/10.1039/C6CP06377B
- B. Peng, Y. Xu, K. Liu, X. Wang, F.M. Mulder, ChemElectroChem, 2017, 4(9), 2140-2144.
- K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim. Acta, 2008, 53(7), 3181-3188. https://doi.org/10.1016/j.electacta.2007.11.057
- T. Binninger, E. Fabbri, R. Kotz, T.J. Schmidt, J. Electrochem. Soc., 2014, 161(3), H121-H128. https://doi.org/10.1149/2.055403jes
- K. Ham, S. Chung, J. Lee, Appl. Chem. Eng., 2019, 30(6), 659-666.
- Q. He, X. Yang, W. Chen, S. Mukerjee, B. Koel, S. Chen, Phys. Chem. Chem. Phys., 2010, 12(39), 12544-12555. https://doi.org/10.1039/c0cp00433b
- S. Kaserer, K.M. Caldwell, D.E. Ramaker, C. Roth, J. Phys. Chem. C, 2013, 117(12), 6210-6217. https://doi.org/10.1021/jp311924q
- K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M.N. Banis, P. Zhang, F. Li, J. Li, L. Chen, NPG Asia Mater., 2015, 7(1), e153-e153. https://doi.org/10.1038/am.2014.122
- E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett., 2009, 9(6), 2255-2259. https://doi.org/10.1021/nl900397t
- L. Kuai, S. Wang, B. Geng, Chem. Commun., 2011, 47(21), 6093-6095. https://doi.org/10.1039/c0cc05429a
- A. M. Hofstead-Duffy, D.-J. Chen, S.-G. Sun, Y. J. Tong, J. Mater. Chem., 2012, 22(11), 5205-5208. https://doi.org/10.1039/c2jm15426a
- D.Y. Chung, K.-J. Lee, Y.-E. Sung, J. Phys. Chem. C., 2016, 120(17), 9028-9035.
- T. Iwasita, Electrochim. Acta, 2002, 47(22-23), 3663-3674. https://doi.org/10.1016/S0013-4686(02)00336-5
- N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, R.A. van Santen, J. Phys. Chem. B, 2002, 106(50), 12938-12947. https://doi.org/10.1021/jp0204105
- A.J. Bard, Electroanalytical Chemistry a Series of Advances, Marcel Dekker, New York, 1991, 181.