DOI QR코드

DOI QR Code

Thermodynamic Evaluation of Sulfate-Roasting Process for the Vanadium Extraction from Korean VTM Ore

국내부존 VTM으로부터 바나듐 회수를 위한 황화배소 공정의 열역학적 평가

  • Kim, Youngjae (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Choi, Kyungsob (Resource Recycling, University of Science Technology (UST)) ;
  • Park, Hyunsik (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Chung, Kyeong Woo (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 김영재 (한국지질자원연구원 자원활용연구본부 순환자원연구센터) ;
  • 최경섭 (과학기술연합대학원대학교 자원순환공학) ;
  • 박현식 (한국지질자원연구원 자원활용연구본부 순환자원연구센터) ;
  • 정경우 (한국지질자원연구원 자원활용연구본부 순환자원연구센터)
  • Received : 2022.03.25
  • Accepted : 2022.04.01
  • Published : 2022.04.30

Abstract

In the present study, the thermodynamic evaluation of the sulfate-roasting process was conducted to extract vanadium from the Korean vanadium titano-magnetite ore. The leaching efficiency of vanadium and other impurities was analyzed for varying roasting temperatures and addition of Na2SO4. In the case of sulfate roasting, the roasting temperature was 200 ℃ higher than that previously observed Na2CO3 roasting. However, the higher leaching efficiency of vanadium and lower leaching efficiency of other impurities, such as aluminum and silicon, were observed. The high selectivity for the extraction of vanadium in sulfate roasting would result from the reaction mechanism between SO2 gas and vanadium concentrate.

본 연구에서는 국내 부존 바나듐 광물인 포천 지역의 바나듐 함유 함티탄철석(VTM: Vanadium-bearing titaniferous magnetite)을 대상으로 하여, 바나듐 회수를 위한 황화 배소 반응의 열역학적 평가를 수행하였다. Na2SO4를 이용하여 황화 배소를 진행하는 경우, 배소조건에 따른 배소 후 바나듐 및 불순물의 수침출 거동을 평가하고, 황화 배소 반응에 대한 메커니즘 규명을 위하여 열역학적 평가를 수행하였다. Na2SO4를 이용한 황화 배소의 경우 Na2CO3를 이용한 염배소 공정과 비교하여 반응 온도는 200 ℃ 정도 높았지만 바나듐 침출률이 높고 Al, Si 등의 불순물에 대한 낮은 침출률을 보였다. 바나듐만 선택적으로 수침출되는 황화 배소 반응의 특징은 기상의 SO2 가스와 정광내 바나듐간의 반응에 따른 반응 메커니즘에 기인하는 것으로 예상되었다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2022-010, 22-3212-1)' 과제의 일환으로 수행되었습니다.

References

  1. G. Lu, T. Zhang, G. Zhang, et al., 2019 : Process and Kinetic Assessment of Vanadium Extraction from Vanadium Slag Using Calcification Roasting and Sodium Carbonate Leaching, JOM. 71, pp.4600-4607. https://doi.org/10.1007/s11837-019-03672-9
  2. G. Bauer, V. Guther, H. Hess, et al., 2017 : Vanadium and Vanadium Compounds, in: Ullmann's Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  3. R. Gilligan, A.N. Nikoloski, 2020 : The extraction of vanadium from titanomagnetites and other sources, Miner. Eng. 146, p.106106.
  4. F. Cardarelli, 2018 : Materials Handbook - A Concise Desktop Reference, 3rd ed., Springer International Publishing, Cham, Switzerland.
  5. M. Pansu, J. Gautheyrou, 2006 : Analysis of Extractable and Total Elements, in: Handb. Soil Anal., Springer Berlin Heidelberg, Berlin, Heidelberg.
  6. S. Nkosi, P. Dire, N. Nyambeni, et al., 2017 : A comparative study of vanadium recovery from titaniferous magnetite using salt, sulphate, and soda ash roast-leach processes, in: T.S.A.I. of M. and Metallurgy (Ed.), 3rd Young Prof. Conf., Pretoria, South Africa.
  7. Y. Kim, H. Lee, H. Park, et al., 2021 : Thermodynamic Analysis of Alkali-Roasting Process for Vanadium Extraction Process, J. Korean Soc. Miner. Energy Resour. Eng. 58, pp.25-29. https://doi.org/10.32390/ksmer.2021.58.1.025
  8. M.S. Safarzadeh, S.M. Howard, 2018 : Revisiting the Kellogg diagrams: roaster diagrams and their usefulness in pyrometallurgy, Miner. Process. Extr. Metall. Rev. 39, pp.191-197. https://doi.org/10.1080/08827508.2017.1401538