DOI QR코드

DOI QR Code

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing

촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발

  • Kim, Da Wan (Chemical Engineering, Sungkyunkwan University, Electronic and Electrical Engineering, Sungkyunkwan University, Mechanical Metrology Group, Korea Research Institute of Standards and Science)
  • Received : 2022.06.14
  • Accepted : 2022.07.18
  • Published : 2022.08.31

Abstract

High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we fabricated multi-walled carbon nanotube sensing layer on a thin polymeric adhesive layer of polydimethylsiloxane. With densely hexagonal-packed microstructures, the pressure sensor achieved 9 times the sensing property of a sensor without microstructures. We then assembled hexagonal microstructures inspired by the toe pads of a tree frog, giving strong shear adhesion under both dry and wet surfaces such as silicon (42 kPa for dry and ~30 kPa for underwater conditions) without chemical-residues after detachment. Our robotic gripper can prevent damage to weak or smooth surfaces that can be damaged at low pressure through pressure signal feedback suggesting a variety of robotic applications.

Keywords

Acknowledgement

This project was funded by the National Research Foundation of Korea (NRF-2022R1A4A3032923) and is currently supported by the publication grant

References

  1. A. Ghosh, C. Yoon, F. Ongaro, S. Scheggi, F. M. Selaru, S. Misra, and D. H. Gracias, "Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery," Frontiers in Mechanical Engineering, 2017, DOI: 10.3389/fmech.2017.00007.
  2. S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee, and C. Pang, "Bioinspired adhesive architectures: from skin patch to integrated bioelectronics," Advanced Materials, vol. 31, no. 34, 2019, DOI: 10.1002/adma.201803309.
  3. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt "Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements," National Academy of Sciences of the United States of America, vol. 102, no. 45, 2005, DOI: 10.1073/pnas.0506328102.
  4. J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, "Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators," Advanced Materials, vol. 28, no. 2, 2016, DOI: 10.1002/adma.201504264.
  5. S. Licht, E. Collins, M. L. Mendes, and C. Baxter, "Stronger at depth: Jamming grippers as deep sea sampling tools," Soft Robotics, vol. 4, no. 4, 2017, DOI: 10.1089/soro.2017.0028.
  6. Z. E. Teoh, B. T. Phillips, K. P. Becker, G. Whit tredge, J. C. Weaver, C. Hoberman, D. F. Gruber, and R. J. Wood, "Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms," Science Robotics, vol. 3, no. 20, 2018, DOI: 10.1126/scirobotics.aat5276.
  7. N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber, and R. J. Wood, "Ultragentle manipulation of delicate structures using a soft robotic gripper," Science Robotics, vol. 4, no. 33, 2019, DOI: 10.1126/scirobotics.aax5425.
  8. Y. Wang, X. Yang, Y. Chen, D. K. Wainwright, C. P. Kenaley, Z. Gong, Z. Liu, H. Liu, J. Guan, T. Wang, J. C. Weaver, R. J. Wood, and L. Wen, "A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish," Science Robotics, vol. 2, no. 10, 2017, DOI: 10.1126/scirobotics.aan8072.
  9. C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M.-G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B.-H. Tok, and Z. Bao, "Highly skin-conformal microhairy sensor for pulse signal amplification," Advanced Materials, vol. 27, no. 4, 2014, DOI: 10.1002/adma.201403807.
  10. H. J. Lee, S. Baik, G. W. Hwang, J. H. Song, D. W. Kim, B. Park, H. Min, J. K. Kim, J. Koh, T.-H. Yang, and C. Pang, "An Electronically Perceptive Bioinspired Soft Wet-Adhesion Actuator with Carbon Nanotube-Based Strain Sensors," ACS Nano, vol. 15, no. 9, 2021, DOI: 10.1021/acsnano.1c05130.
  11. S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, and D. H. Kim, "Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli," Advanced Materials, vol. 27, no. 28, 2015, DOI: 10.1002/adma.201501408.
  12. T. Kim, J. Park, J. Sohn, D. Cho, and S. Jeon, "Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes," ACS Nano, vol. 10, no. 4, 2016, DOI: 10.1021/acsnano.6b01355.
  13. C. Pang, G.-Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers," Nature Materials, vol. 11, 2012, DOI: 10.1038/nmat3380.
  14. S. Sethi, L. Ge, L. Ci, P. M. Ajayan, and A. Dhinojwala, "Gecko-inspired carbon nanotube-based self-cleaning adhesives," Nano Letters, vol. 8, no. 3, 2008, DOI: 10.1021/nl0727765.
  15. S. Hu, Z. Xia, and X. Gao, "Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications," ACS Applied Materials & Interfaces, vol. 4, no. 4, 2012, DOI: 10.1021/am201796k.
  16. D. Brodoceanu, C. T. Bauer, E. Kroner, E. Arzt, and T. Kraus, "Hierarchical bioinspired adhesive surfaces-a review," Bioinspiration & Biomimetics, vol. 11, no. 5, 2016, DOI: 10.1088/1748-3190/11/5/051001.
  17. L. F. Boesel, C. Greiner, E. Arzt , and A. del Campo, "Gecko-inspired surfaces: a path to strong and reversible dry adhesives," Advanced Materials, vol. 22, no. 19, 2010, DOI: 10.1002/adma.200903200.
  18. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt, "Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements," National Academy of Sciences of the United States America, vol. 102, no. 45, 2005, DOI: 10.1073/pnas.0506328102.
  19. S. Baik, D. W. Kim, Y. Park, T.-J. Lee, S. H. Bhang, and C. Pang, "A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi," Nature, vol. 546, 2017, DOI: 10.1038/nature22382.
  20. L. Xue, B. Sanz, A. Luo, K. T. Turner, X. Wang, D. Tan, R. Zhang, H. Du, M. Steinhart, C. Mijangos, M. Guttmann, M. Kappl, and A. del Campo, "Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog," ACS Nano, vol. 11, no. 10, 2017, DOI: 10.1021/acsnano.7b04994.
  21. P. Rao, T. L. Sun, L. Chen, R. Takahashi, G. Shinohara, H. Guo, D. R. King, T. Kurokawa, and J. P. Gong, "Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multiscale Design," Advanced Materials, vol. 30, no. 32, 2018, DOI: 10.1002/adma.201801884.
  22. J. Iturri, L. Xue, M. Kappl, L. G.-Fernandez, W. J. P. Barnes, H.-J. Butt, and A. del Campo, "Torrent frog-inspired adhesives: attachment to flooded surfaces," Advanced Materials, vol. 25, no. 10, 2015, DOI: 10.1002/adfm.201403751.
  23. S. Chun, Y. Choi, D. I. Suh, G. Y. Bae, S. Hyun, and W. Park, "A tactile sensor using single layer graphene for surface texture recognition," Nanoscale, vol. 29, 2017, DOI: 10.1039/C7NR03748A.
  24. J. K. A. Langowski, D. Dodou, M. Kamperman, and J. L. van Leeuwen, "Tree frog attachment: mechanisms, challenges, and perspectives," Frontiers in Zoology, vol. 15, no. 32, 2018, DOI: 10.1186/s12983-018-0273-x.
  25. D. W. Kim, S. Baik, H. Min, S. Chun, H. J. Lee, K. H. Kim, J. Y. Lee, and C. Pang, "Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion," Advanced Functional Materials, vol. 29, no. 13, 2019, DOI: 10.1002/adfm.201807614.
  26. A. Majumder, A. Ghatak, and A. Sharma, "Microfluidic adhesion induced by subsurface microstructures," Science, vol. 318, no. 5848, 2007, DOI: 10.1126/science.1145839.